Numerical optimal control of size-structured systems

被引:0
作者
Veliov, V. M. [1 ]
机构
[1] Vienna Univ Technol, Vienna, Austria
来源
Numerical Analysis and Applied Mathematics | 2007年 / 936卷
关键词
optimal control; size-structured systems; numerical methods;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:590 / 592
页数:3
相关论文
共 8 条
[1]  
Abia LM, 2004, DISCRETE CONT DYN-B, V4, P1203
[2]   Competitive exclusion and coexistence for a quasilinear size-structured population model [J].
Ackleh, AS ;
Deng, K ;
Wang, XB .
MATHEMATICAL BIOSCIENCES, 2004, 192 (02) :177-192
[3]   A finite difference approximation for a coupled system of nonlinear size-structured populations [J].
Ackleh, AS ;
Banks, HT ;
Deng, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (06) :727-748
[4]   Numerical integration of fully nonlinear size-structured population models [J].
Angulo, O ;
López-Marcos, JC .
APPLIED NUMERICAL MATHEMATICS, 2004, 50 (3-4) :291-327
[5]  
de Roos A. M., 1988, Numer. Methods Partial Diff. Eq., V4, P173, DOI [DOI 10.1002/NUM.1690040303, 10.1002/num.1690040303]
[6]   A general model of size-dependent population dynamics with nonlinear growth rate [J].
Kato, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 297 (01) :234-256
[7]   Convergence of the gradient projection method in optimal control problems [J].
M. S. Nikol’skii .
Computational Mathematics and Modeling, 2007, 18 (2) :148-156
[8]  
TARNICERIU OC, 2007, LARG SCAL SCI COMP 6