Unsupervised phase mapping of X-ray diffraction data by nonnegative matrix factorization integrated with custom clustering

被引:50
作者
Stanev, Valentin [1 ,2 ,3 ]
Vesselinov, Velimir V. [4 ]
Kusne, A. Gilad [1 ,5 ]
Antoszewski, Graham [6 ]
Takeuchi, Ichiro [1 ,2 ]
Alexandrov, Boian S. [7 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[4] Los Alamos Natl Lab, Earth Sci Div, Los Alamos, NM 87545 USA
[5] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[6] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[7] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
基金
美国能源部; 美国国家科学基金会;
关键词
MUTATIONAL PROCESSES; IDENTIFICATION; SIGNATURES;
D O I
10.1038/s41524-018-0099-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Analyzing large X-ray diffraction (XRD) datasets is a key step in high-throughput mapping of the compositional phase diagrams of combinatorial materials libraries. Optimizing and automating this task can help accelerate the process of discovery of materials with novel and desirable properties. Here, we report a new method for pattern analysis and phase extraction of XRD datasets. The method expands the Nonnegative Matrix Factorization method, which has been used previously to analyze such datasets, by combining it with custom clustering and cross-correlation algorithms. This new method is capable of robust determination of the number of basis patterns present in the data which, in turn, enables straightforward identification of any possible peak-shifted patterns. Peak-shifting arises due to continuous change in the lattice constants as a function of composition and is ubiquitous in XRD datasets from composition spread libraries. Successful identification of the peak-shifted patterns allows proper quantification and classification of the basis XRD patterns, which is necessary in order to decipher the contribution of each unique single-phase structure to the multi-phase regions. The process can be utilized to determine accurately the compositional phase diagram of a system under study. The presented method is applied to one synthetic and one experimental dataset and demonstrates robust accuracy and identification abilities.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization [J].
Alexandrov, Boian S. ;
Vesselinov, Velimir V. .
WATER RESOURCES RESEARCH, 2014, 50 (09) :7332-7347
[2]   Signatures of mutational processes in human cancer [J].
Alexandrov, Ludmil B. ;
Nik-Zainal, Serena ;
Wedge, David C. ;
Aparicio, Samuel A. J. R. ;
Behjati, Sam ;
Biankin, Andrew V. ;
Bignell, Graham R. ;
Bolli, Niccolo ;
Borg, Ake ;
Borresen-Dale, Anne-Lise ;
Boyault, Sandrine ;
Burkhardt, Birgit ;
Butler, Adam P. ;
Caldas, Carlos ;
Davies, Helen R. ;
Desmedt, Christine ;
Eils, Roland ;
Eyfjord, Jorunn Erla ;
Foekens, John A. ;
Greaves, Mel ;
Hosoda, Fumie ;
Hutter, Barbara ;
Ilicic, Tomislav ;
Imbeaud, Sandrine ;
Imielinsk, Marcin ;
Jaeger, Natalie ;
Jones, David T. W. ;
Jones, David ;
Knappskog, Stian ;
Kool, Marcel ;
Lakhani, Sunil R. ;
Lopez-Otin, Carlos ;
Martin, Sancha ;
Munshi, Nikhil C. ;
Nakamura, Hiromi ;
Northcott, Paul A. ;
Pajic, Marina ;
Papaemmanuil, Elli ;
Paradiso, Angelo ;
Pearson, John V. ;
Puente, Xose S. ;
Raine, Keiran ;
Ramakrishna, Manasa ;
Richardson, Andrea L. ;
Richter, Julia ;
Rosenstiel, Philip ;
Schlesner, Matthias ;
Schumacher, Ton N. ;
Span, Paul N. ;
Teague, Jon W. .
NATURE, 2013, 500 (7463) :415-+
[3]   Deciphering Signatures of Mutational Processes Operative in Human Cancer [J].
Alexandrov, Ludmil B. ;
Nik-Zainal, Serena ;
Wedge, David C. ;
Campbell, Peter J. ;
Stratton, Michael R. .
CELL REPORTS, 2013, 3 (01) :246-259
[4]  
[Anonymous], 2009, NONNEGATIVE MATRIX T
[5]   A reliable methodology for high throughput identification of a mixture of crystallographic phases from powder X-ray diffraction data [J].
Baumes, Laurent Allan ;
Moliner, Manuel ;
Nicoloyannis, Nicolas ;
Corma, Avelino .
CRYSTENGCOMM, 2008, 10 (10) :1321-1324
[6]   Semi-Supervised Approach to Phase Identification from Combinatorial Sample Diffraction Patterns [J].
Bunn, Jonathan Kenneth ;
Hu, Jianjun ;
Hattrick-Simpers, Jason R. .
JOM, 2016, 68 (08) :2116-2125
[7]   Graph Regularized Nonnegative Matrix Factorization for Data Representation [J].
Cai, Deng ;
He, Xiaofei ;
Han, Jiawei ;
Huang, Thomas S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1548-1560
[8]  
Ermon S., 2015, PATTERN DECOMPOSITIO
[9]   Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite [J].
Fujino, S. ;
Murakami, M. ;
Anbusathaiah, V. ;
Lim, S. -H. ;
Nagarajan, V. ;
Fennie, C. J. ;
Wuttig, M. ;
Salamanca-Riba, L. ;
Takeuchi, I. .
APPLIED PHYSICS LETTERS, 2008, 92 (20)
[10]   Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach [J].
Fukumura, T ;
Ohtani, M ;
Kawasaki, M ;
Okimoto, Y ;
Kageyama, T ;
Koida, T ;
Hasegawa, T ;
Tokura, Y ;
Koinuma, H .
APPLIED PHYSICS LETTERS, 2000, 77 (21) :3426-3428