Unsaturated fatty acids down-regulate SREBP isoforms 1a and 1c by two mechanisms in HEK-293 cells

被引:359
作者
Hannah, VC [1 ]
Ou, JF [1 ]
Luong, A [1 ]
Goldstein, JL [1 ]
Brown, MS [1 ]
机构
[1] Univ Texas, SW Med Ctr, Dept Mol Genet, Dallas, TX 75390 USA
关键词
D O I
10.1074/jbc.M007273200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sterol regulatory element-binding proteins (SREBPs) are membrane-bound transcription factors that increase the synthesis of fatty acids as well as cholesterol in animal cells. All three SREBP isoforms (SREBP-1a, -1c, and -2) are subject to feedback regulation by cholesterol, which blocks their proteolytic release from membranes. Previous data indicate that the SREBPs are also negatively regulated by unsaturated fatty acids, but the mechanism is uncertain. In the current experiments, unsaturated fatty acids decreased the nuclear content of SREBP-1, but not SREBP-2, in cultured human embryonic kidney (HEK)-293 cells. The potency of unsaturated fatty acids increased with increasing chain length and degree of unsaturation, Oleate, linoleate, and arachidonate were all effective, but the saturated fatty acids palmitate and stearate were not effective, Downregulation occurred at two levels, The mRNAs encoding SREBP-1a and SREBP-1c were markedly reduced, and the proteolytic processing of these SREBPs was inhibited, When SREBP-1a was produced by a cDNA expressed from an independent promoter, unsaturated fatty acids reduced nuclear SREBP-1a without affecting the mRNA level. There was no effect when the cDNA encoded a truncated version that was not membrane-bound, When administered together, sterols and unsaturated fatty acids potentiated each other in reducing nuclear SREBP-1, In the absence of fatty acids, sterols did not cause a sustained reduction of nuclear SREBP-1, but they did reduce nuclear SREBP-2, We conclude that unsaturated fatty acids, as well as sterols, can downregulate nuclear SREBPs and that unsaturated fatty acids have their greatest inhibitory effects on SREBP-1a and SREBP-1c, whereas sterols have their greatest inhibitory effects on SREBP-2.
引用
收藏
页码:4365 / 4372
页数:8
相关论文
共 32 条
[1]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[2]   A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood [J].
Brown, MS ;
Goldstein, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11041-11048
[3]  
BUCOLO G, 1973, CLIN CHEM, V19, P476
[4]  
CHAM BE, 1976, J LIPID RES, V17, P176
[5]   Transport-dependent proteolysis of SREBP: Relocation of Site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi [J].
DeBose-Boyd, RA ;
Brown, MS ;
Li, WP ;
Nohturfft, A ;
Goldstein, JL ;
Espenshade, PJ .
CELL, 1999, 99 (07) :703-712
[6]   Cleavage site for sterol-regulated protease localized to a Leu-Ser bond in the lumenal loop of sterol regulatory element-binding protein-2 [J].
Duncan, EA ;
Brown, MS ;
Goldstein, JL ;
Sakai, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (19) :12778-12785
[7]   Sterols and isoprenoids: Signaling molecules derived from the cholesterol biosynthetic pathway [J].
Edwards, PA ;
Ericsson, J .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :157-185
[8]   Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta [J].
Forman, BM ;
Chen, J ;
Evans, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (09) :4312-4317
[9]  
GOLDSTEIN JL, 1983, METHOD ENZYMOL, V98, P241
[10]   Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis [J].
Horton, JD ;
Shimomura, I .
CURRENT OPINION IN LIPIDOLOGY, 1999, 10 (02) :143-150