STOKES AND NAVIER-STOKES EQUATIONS WITH A NONHOMOGENEOUS DIVERGENCE CONDITION

被引:19
作者
Raymond, Jean-Pierre [1 ,2 ]
机构
[1] Univ Toulouse, F-31062 Toulouse 9, France
[2] CNRS, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2010年 / 14卷 / 04期
关键词
Navier-Stokes equations; nonhomogeneous divergence condition; nonhomogeneous Dirichlet boundary condition; BOUNDARY-VALUE-PROBLEMS; STABILIZATION; COMMUTATIVITE;
D O I
10.3934/dcdsb.2010.14.1537
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with a nonhomogeneous divergence condition. We also prove the existence of global weak solutions to the 3D Navier-Stokes equations when the divergence is not equal to zero. These equations intervene in control problems for the Navier-Stokes equations and in fluid-structure interaction problems.
引用
收藏
页码:1537 / 1564
页数:28
相关论文
共 27 条
[1]  
Amann H, 2003, J NONLINEAR MATH PHY, V10, P1
[2]  
Amann H., 2002, INT MATH SER, V2, P1
[3]  
[Anonymous], 1992, Representation and Control of Infinite Dimensional Systems
[4]  
[Anonymous], 1988, ANAL MATH CALCUL NUM
[5]  
[Anonymous], 1994, An introduction to the mathematical theory of the Navier-Stokes equations
[6]  
[Anonymous], ASPECTS MATH E
[7]  
Barbu V, 2006, MEM AM MATH SOC, V181, P1
[8]   PENALIZATION OF DIRICHLET OPTIMAL CONTROL PROBLEMS [J].
Casas, Eduardo ;
Mateos, Mariano ;
Raymond, Jean-Pierre .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (04) :782-809
[9]  
FARWIG R, 2007, TOPICS PARTIAL DIFFE
[10]   A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data [J].
Farwig, Reinhard ;
Galdi, Giovanni P. ;
Sohr, Hermann .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2006, 8 (03) :423-444