A SYSTEMATIC REVIEW OF DEEP LEARNING APPLICATIONS FOR OPTICAL COHERENCE TOMOGRAPHY IN AGE-RELATED MACULAR DEGENERATION

被引:14
作者
Paul, Samantha K. [1 ]
Pan, Ian [2 ]
Sobol, Warren M. [1 ]
机构
[1] Case Western Reserve Univ, Dept Ophthalmol, Univ Hosp Cleveland Med Ctr, Sch Med, Cleveland, OH 44106 USA
[2] Harvard Med Sch, Dept Radiol, Brigham & Womens Hosp, Boston, MA 02115 USA
来源
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES | 2022年 / 42卷 / 08期
关键词
deep learning; artificial intelligence; age-related macular degeneration; optical coherence tomography; VISUAL OUTCOMES; PREDICTION; DELAY;
D O I
10.1097/IAE.0000000000003535
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To survey the current literature regarding applications of deep learning to optical coherence tomography in age-related macular degeneration (AMD). Methods: A Preferred Reporting Items for Systematic Reviews and Meta-Analyses systematic review was conducted from January 1, 2000, to May 9, 2021, using PubMed and EMBASE databases. Original research investigations that applied deep learning to optical coherence tomography in patients with AMD or features of AMD (choroidal neovascularization, geographic atrophy, and drusen) were included. Summary statements, data set characteristics, and performance metrics were extracted from included articles for analysis. Results: We identified 95 articles for this review. The majority of articles fell into one of six categories: 1) classification of AMD or AMD biomarkers (n = 40); 2) segmentation of AMD biomarkers (n = 20); 3) segmentation of retinal layers or the choroid in patients with AMD (n = 7); 4) assessing treatment response and disease progression (n = 13); 5) predicting visual function (n = 6); and 6) determining the need for referral to a retina specialist (n = 3). Conclusion: Deep learning models generally achieved high performance, at times comparable with that of specialists. However, external validation and experimental parameters enabling reproducibility were often limited. Prospective studies that demonstrate generalizability and clinical utility of these models are needed.
引用
收藏
页码:1417 / 1424
页数:8
相关论文
共 44 条
[1]  
[Anonymous], 1999, EN 1015-3
[2]   Automated summarisation of SDOCT volumes using deep learning: Transfer learning vs de novo trained networks [J].
Antony, Bhavna Josephine ;
Maetschke, Stefan ;
Garnavi, Rahil .
PLOS ONE, 2019, 14 (05)
[3]   Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers [J].
Banerjee, Imon ;
de Sisternes, Luis ;
Hallak, Joelle A. ;
Leng, Theodore ;
Osborne, Aaron ;
Rosenfeld, Philip J. ;
Gregori, Giovanni ;
Durbin, Mary ;
Rubin, Daniel .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]  
Caron M, 2021, Arxiv, DOI arXiv:2006.09882
[5]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[6]   Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps [J].
Christopher, Mark ;
Bowd, Christopher ;
Belghith, Akram ;
Goldbaum, Michael H. ;
Weinreb, Robert N. ;
Fazio, Massimo A. ;
Girkin, Christopher A. ;
Liebmann, Jeffrey M. ;
Zangwill, Linda M. .
OPHTHALMOLOGY, 2020, 127 (03) :346-356
[7]   The RSNA Pulmonary Embolism CT Dataset [J].
Cob, Errol ;
Kitamura, Felipe C. ;
Hobbs, Stephen B. ;
Wu, Carol C. ;
Lungren, Matthew P. ;
Prevedello, Luciano M. ;
Kalpathy-Cramer, Jayashree ;
Ball, Robyn L. ;
Shih, George ;
Stein, Anouk ;
Halabi, Safwan S. ;
Akinmakas, Emre ;
Law, Meng ;
Kumar, Parveen ;
Manzalawi, Karam A. ;
Rubio, Dennis Charles Nelson ;
Sechrist, Jacob W. ;
Germaine, Pauline ;
Lopez, Eva Castro ;
Amerio, Tomas ;
Gupta, Puslpender ;
Jain, Manoj ;
Kay, Fernando U. ;
Lin, Cheng Ting ;
Sen, Saugata ;
Revels, Jonathan Wesley ;
Brussaarel, Carok C. ;
Mongan, John .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (02) :1-7
[8]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[9]   Artificial Intelligence Algorithm Improves Radiologist Performance in Skeletal Age Assessment: A Prospective Multicenter Randomized Controlled Trial [J].
Eng, David K. ;
Khandwala, Nishith B. ;
Long, Jin ;
Fefferman, Nancy R. ;
Lala, Shailee, V ;
Strubel, Naomi A. ;
Milla, Sarah S. ;
Filice, Ross W. ;
Sharp, Susan E. ;
Towbin, Alexander J. ;
Francavilla, Michael L. ;
Kaplan, Summer L. ;
Ecklund, Kirsten ;
Prabhu, Sanjay P. ;
Dillon, Brian J. ;
Everist, Brian M. ;
Anton, Christopher G. ;
Bittman, Mark E. ;
Dennis, Rebecca ;
Larson, David B. ;
Seekins, Jayne M. ;
Silva, Cicero T. ;
Zandieh, Arash R. ;
Langlotz, Curtis P. ;
Lungren, Matthew P. ;
Halabi, Safwan S. .
RADIOLOGY, 2021, 301 (03) :692-699
[10]  
Flanders AE, 2020, RADIOL-ARTIF INTELL, V2, DOI [10.1148/ryai.2020209002, 10.1148/ryai.2020190211]