A Standard Zero Free Region for Rankin-Selberg L-Functions

被引:11
作者
Goldfeld, Dorian [1 ]
Li, Xiaoqing [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] SUNY Buffalo, Dept Math, 244 Math Bldg, Buffalo, NY 14260 USA
关键词
MULTIPLICITY ONE; GL(N); PROOF;
D O I
10.1093/imrn/rnx087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A standard zero free region is obtained for Rankin-Selberg L-functions L(s, f x (f) over tilde), where f is an almost everywhere tempered Maass form on GL(n) and f is not necessarily self dual. The method is based on the theory of Eisenstein series generalizing a work of Sarnak.
引用
收藏
页码:7067 / 7136
页数:70
相关论文
共 29 条
[1]  
[Anonymous], 1996, COURSE MODERN ANAL
[2]  
ARTHUR J, 1980, COMPOS MATH, V40, P87
[3]  
Bombieri E., 1969, LARGE SIEVE METHOD N, P9, DOI [10.1007/978-1-4615-4819-5_1, DOI 10.1007/978-1-4615-4819-5_1]
[4]   Effective multiplicity one on GLN and narrow zero-free regions for Rankin-Selberg L-functions [J].
Brumley, Farrell .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (06) :1455-1474
[5]   Lower bounds for L-functions at the edge of the critical strip [J].
Gelbart, Stephen S. ;
Lapid, Erez M. .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) :619-638
[6]  
Goldfeld D., 2006, Cambridge Studies in Advanced Mathematics, V99
[7]   Periods of automorphic forms: the case of (GLn+1 x GLn, GLn) [J].
Ichino, Atsushi ;
Yamana, Shunsuke .
COMPOSITIO MATHEMATICA, 2015, 151 (04) :665-712
[8]  
Iwaniec H, 2000, GEOM FUNCT ANAL, P705
[9]  
Iwaniec H., 2004, Analytic Number Theory, V53
[10]  
JACQUET H, 1985, COMPOS MATH, V54, P243