Hyperspaces of continua with connected boundaries in π-Euclidean Peano continua

被引:1
作者
Krupski, Pawel [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, Dept Comp Sci, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Absorber; Continuum; Hilbert cube; Hyperspace; pi-Euclidean space;
D O I
10.1016/j.topol.2019.106954
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a nondegenerate Peano unicoherent continuum. The family CB(X) of proper subcontinua of X with connected boundaries is a G(delta)-subset of the hyperspace C(X) of all subcontinua of X. If every nonempty open subset of X contains an open subset homeomorphic to R-n (such space is called pi-n-Euclidean) and 2 <= n < infinity, then C(X) \ CB(X) is recognized as an F-sigma-absorber in C(X); if additionally, no one-dimensional subset separates X, then the family of all members of CB(X) which separate X is a D-2(F-sigma)-absorber in C(X), where D-2(F-sigma) denotes the small Borel class of differences of two sigma-compacta. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 10 条
  • [1] ABSORBING SYSTEMS IN INFINITE-DIMENSIONAL MANIFOLDS
    BAARS, J
    GLADDINES, H
    VANMILL, J
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1993, 50 (02) : 147 - 182
  • [2] Hyperspaces of nowhere topologically complete spaces
    Banakh, T
    Cauty, R
    [J]. MATHEMATICAL NOTES, 1997, 62 (1-2) : 30 - 43
  • [3] Banakh T., 1996, Absorbing Sets in Infinite Dimensional Manifolds
  • [4] Fσ-absorbing sequences in dimension theory
    Cauty, R
    [J]. FUNDAMENTA MATHEMATICAE, 1999, 159 (02) : 115 - 126
  • [5] Curtis D W., 1978, Fundamenta Mathematica, V101, P19, DOI DOI 10.4064/FM-101-1-19-38
  • [6] Escobedo R., PREPRINT
  • [7] More absorbers in hyperspaces
    Krupski, Pawel
    Samulewicz, Alicja
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2017, 221 : 352 - 369
  • [8] Kuratowski K., 1968, TOPOLOGY, V2
  • [9] Kuratowski K., 1932, Fund. Math, V18, P148
  • [10] van Mill J., 2002, INFINITE DIMENSIONAL