Insights into the Lignocellulose-Degrading Enzyme System of Humicola grisea var. thermoidea Based on Genome and Transcriptome Analysis

被引:15
作者
Steindorff, Andrei Stecca [1 ,5 ]
Serra, Luana Assis [1 ,4 ]
Formighieri, Eduardo Fernandes [1 ]
de Faria, Fabricia Paula [2 ]
Pocas-Fonseca, Marcio Jose [3 ]
Moreira de Almeida, Joao Ricardo [1 ,4 ]
机构
[1] EMBRAPA Agroenergy, Lab Genet & Biotechnol, Brasilia, DF, Brazil
[2] Univ Fed Goias, Dept Biochem & Mol Biol, Goiania, Go, Brazil
[3] Univ Brasilia, Dept Cellular Biol, Brasilia, DF, Brazil
[4] Univ Brasilia, Inst Biol, Dept Cell Biol, Grad Program Microbial Biol, Brasilia, DF, Brazil
[5] Lawrence Berkeley Natl Lab, Dept Energy Joint Gerome Inst, Berkeley, CA USA
来源
MICROBIOLOGY SPECTRUM | 2021年 / 9卷 / 02期
关键词
Humicola grisea; genome sequencing; transcriptome; sugarcane bagasse; pH regulation; CAZy enzymes; BETA-GLUCOSIDASE; FUNGUS; BIOMASS; PURIFICATION; PREDICTION; FUMIGATUS; CELLULASE; SEQUENCE; XYLANASE; GENES;
D O I
10.1128/Spectrum.01088-21
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Humicola grisea var. thermoidea is a thermophilic ascomycete and important enzyme producer that has an efficient enzymatic system with a broad spectrum of thermostable carbohydrate-active (CAZy) enzymes. These enzymes can be employed in lignocellulose biomass deconstruction and other industrial applications. In this work, the genome of H. grisea var. thermoidea was sequenced. The acquired sequence reads were assembled into a total length of 28.75 Mbp. Genome features correlate with what was expected for thermophilic Sordariomycetes. The transcriptomic data showed that sugarcane bagasse significantly upregulated genes related to primary metabolism and polysaccharide deconstruction, especially hydrolases, at both pH 5 and pH 8. However, a number of exclusive and shared genes between the pH values were found, especially at pH 8. H. grisea expresses an average of 211 CAZy enzymes (CAZymes), which are capable of acting in different substrates. The top upregulated genes at both pH values represent CAZyme-encoding genes from different classes, including acetylxylan esterase, endo-1,4-beta-mannosidase, exoglucanase, and endoglucanase genes. For the first time, the arsenal that the thermophilic fungus H. grisea var. thermoidea possesses to degrade the lignocellulosic biomass is shown. Carbon source and pH are of pivotal importance in regulating gene expression in this organism, and alkaline pH is a key regulatory factor for sugarcane bagasse hydrolysis. This work paves the way for the genetic manipulation and robust biotechnological applications of this fungus. IMPORTANCE Most studies regarding the use of fungi as enzyme producers for biomass deconstruction have focused on mesophile species, whereas the potential of thermophiles has been evaluated less. This study revealed, through genome and transcriptome analyses, the genetic repertoire of the biotechnological relevant thermophile fungus Humicola grisea. Comparative genomics helped us to further understand the biology and biotechnological potential of H. grisea. The results demonstrate that this fungus possesses an arsenal of carbohydrate-active (CAZy) enzymes to degrade the lignocellulosic biomass. Indeed, it expresses more than 200 genes encoding CAZy enzymes when cultivated in sugarcane bagasse. Carbon source and pH are key factors for regulating the gene expression in this organism. This work shows, for the first time, the great potential of H. grisea as an enzyme producer and a gene donor for biotechnological applications and provides the base for the genetic manipulation and robust biotechnological applications of this fungus.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes [J].
Abbott, Wade ;
Alber, Orly ;
Bayer, Ed ;
Berrin, Jean-Guy ;
Boraston, Alisdair ;
Brumer, Harry ;
Brzezinski, Ryszard ;
Clarke, Anthony ;
Cobucci-Ponzano, Beatrice ;
Cockburn, Darrell ;
Coutinho, Pedro ;
Czjzek, Mirjam ;
Dassa, Bareket ;
Davies, Gideon John ;
Eijsink, Vincent ;
Eklof, Jens ;
Felice, Alfons ;
Ficko-Blean, Elizabeth ;
Pincher, Geoff ;
Fontaine, Thierry ;
Fujimoto, Zui ;
Fujita, Kiyotaka ;
Fushinobu, Shinya ;
Gilbert, Harry ;
Gloster, Tracey ;
Goddard-Borger, Ethan ;
Greig, Ian ;
Hehemann, Jan-Hendrik ;
Hemsworth, Glyn ;
Henrissat, Bernard ;
Hidaka, Masafumi ;
Hurtado-Guerrero, Ramon ;
Igarashi, Kiyohiko ;
Ishida, Takuya ;
Janecek, Stefan ;
Jongkees, Seino ;
Juge, Nathalie ;
Kaneko, Satoshi ;
Katayama, Takane ;
Kitaoka, Motomitsu ;
Konno, Naotake ;
Kracher, Daniel ;
Kulminskaya, Anna ;
van Bueren, Alicia Lammerts ;
Larsen, Sine ;
Lee, Junho ;
Linder, Markus ;
LoLeggio, Leila ;
Ludwig, Roland ;
Luis, Ana .
GLYCOBIOLOGY, 2018, 28 (01) :3-8
[2]   BETA-GLUCOSIDASE ACTIVITY OF A THERMOPHILIC CELLULOLYTIC FUNGUS, HUMICOLA SP [J].
ARAUJO, EF ;
BARROS, EG ;
CALDAS, RA ;
SILVA, DO .
BIOTECHNOLOGY LETTERS, 1983, 5 (11) :781-784
[3]   Secretome analysis of thermophilic mould Myceliophthora thermophila cultivated on rice straw and hydrolysis of lignocellulosic biomass for bioethanol production [J].
Bala, Anju ;
Anu ;
Alokika ;
Kumar, Anil ;
Kumar, Sanjeev ;
Singh, Davender ;
Singh, Bijender .
BIOCATALYSIS AND BIOTRANSFORMATION, 2020, 38 (04) :283-292
[4]   Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels [J].
Bala, Anju ;
Singh, Bijender .
RENEWABLE ENERGY, 2019, 136 :1231-1244
[5]   Expression of a Glucose-tolerant β-glucosidase from Humicola grisea var. thermoidea in Saccharomyces cerevisiae [J].
Benoliel, Bruno ;
Pocas-Fonseca, Marcio Jose ;
Goncalves Torres, Fernando Araripe ;
Pepe de Moraes, Lidia Maria .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 160 (07) :2036-2044
[6]   Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris [J].
Berka, Randy M. ;
Grigoriev, Igor V. ;
Otillar, Robert ;
Salamov, Asaf ;
Grimwood, Jane ;
Reid, Ian ;
Ishmael, Nadeeza ;
John, Tricia ;
Darmond, Corinne ;
Moisan, Marie-Claude ;
Henrissat, Bernard ;
Coutinho, Pedro M. ;
Lombard, Vincent ;
Natvig, Donald O. ;
Lindquist, Erika ;
Schmutz, Jeremy ;
Lucas, Susan ;
Harris, Paul ;
Powlowski, Justin ;
Bellemare, Annie ;
Taylor, David ;
Butler, Gregory ;
de Vries, Ronald P. ;
Allijn, Iris E. ;
van den Brink, Joost ;
Ushinsky, Sophia ;
Storms, Reginald ;
Powell, Amy J. ;
Paulsen, Ian T. ;
Elbourne, Liam D. H. ;
Baker, Scott E. ;
Magnuson, Jon ;
LaBoissiere, Sylvie ;
Clutterbuck, A. John ;
Martinez, Diego ;
Wogulis, Mark ;
de Leon, Alfredo Lopez ;
Rey, Michael W. ;
Tsang, Adrian .
NATURE BIOTECHNOLOGY, 2011, 29 (10) :922-U222
[7]   Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass [J].
Borin, Gustavo Pagotto ;
Sanchez, Camila Cristina ;
de Souza, Amanda Pereira ;
de Santana, Eliane Silva ;
de Souza, Aline Tieppo ;
Paes Leme, Adriana Franco ;
Squina, Fabio Marcio ;
Buckeridge, Marcos ;
Goldman, Gustavo Henrique ;
de Castro Oliveira, Juliana Velasco .
PLOS ONE, 2015, 10 (06)
[8]   Screening method to prioritize relevant bio-based acids and their biochemical processes using recent patent information [J].
Braga, Melissa ;
Ferreira, Priscila M. ;
Almeida, Joao Ricardo M. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2021, 15 (01) :231-249
[9]   Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa [J].
Campos Antonieto, Amanda Cristina ;
Pedersoli, Wellington Ramos ;
Castro, Lilian dos Santos ;
Santos, Rodrigo da Silva ;
da Silva Cruz, Aline Helena ;
Vieira Nogueira, Karoline Maria ;
Silva-Rocha, Rafael ;
Rossi, Antonio ;
Silva, Roberto Nascimento .
PLOS ONE, 2017, 12 (01)
[10]   PURIFICATION AND CHARACTERIZATION OF A GLUCOAMYLASE FROM HUMICOLA-GRISEA [J].
CAMPOS, L ;
FELIX, CR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (06) :2436-2438