miR-381-abundant small extracellular vesicles derived from kartogenin-preconditioned mesenchymal stem cells promote chondrogenesis of MSCs by targeting TAOK1

被引:52
作者
Jing, Hui [1 ,2 ]
Zhang, Xiaoyang [1 ]
Luo, Kai [1 ]
Luo, Qiancheng [1 ]
Yin, Meng [1 ]
Wang, Wei [1 ]
Zhu, Zhongqun [1 ]
Zheng, Jinghao [1 ]
He, Xiaomin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Shanghai Childrens Med Ctr, Dept Cardiothorac Surg, 1678 Dong Fang Rd, Shanghai 200127, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Med, Shanghai Gen Hosp, Dept Thorac Surg, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Small extracellular vesicles; Mesenchymal stem cells; Kartogenin; Chondrogenesis; miRNA; STROMAL CELLS; EXOSOMES; DIFFERENTIATION; CHONDROCYTES; MICRORNAS;
D O I
10.1016/j.biomaterials.2019.119682
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Small extracellular vesicles (sEVs) derived from mesenchymal stem cells have been shown to possess potent regenerative potential. In this study, we evaluated the chondrogenic effect of sEVs derived from kartogenin-preconditioned human umbilical cord mesenchymal stem cells (hUCMSCs). sEVs were isolated from the supernatants of KGN-preconditioned hUCMSCs (KGN-sEV) by gradient ultra-centrifugation, and internalized by native hUCMSCs, thereby inducing the chondrogenic differentiation. The underlying mechanism of KGN-sEV-induced chondrogenesis was explored by high-throughput sequencing and verified by transfection with the corresponding mimic and inhibitor. Sequencing identified the unique enrichment of a set of miRNAs in KGN-sEV compared with sEVs derived from unpreconditioned cells (un-sEV). Overexpression/inhibition in vitro and in vivo demonstrated that this chondrogenesis-inducing potential was primarily attributed to miR-381-3p, one of the most abundant miRNAs in KGN-sEV. Dual-luciferase reporter assays showed that miR-381-3p promoted chondrogenesis through direct suppression of TAOK1 by targeting its 3' untranslated region, thereby suppressing the Hippo signaling pathway. Collectively, our results highlight the regenerative potential of KGN-sEV to induce chondrogenic differentiation of MSCs, which is mainly achieved by delivering sEV-miR-381-3p, which targets TAOK1.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Exosomes derived from hypoxia preconditioned mesenchymal stem cells laden in a silk hydrogel promote cartilage regeneration via the miR-205-5p/PTEN/AKT pathway
    Shen, Kai
    Duan, Ao
    Cheng, Jiangqi
    Yuan, Tao
    Zhou, Jinchun
    Song, Huanghe
    Chen, Zhefeng
    Wan, Bin
    Liu, Jiuxiang
    Zhang, Xiao
    Zhang, Yi
    Xie, Rui
    Liu, Feng
    Fan, Weimin
    Zuo, Qiang
    ACTA BIOMATERIALIA, 2022, 143 : 173 - 188
  • [22] Extracellular Vesicles Derived from Mesenchymal Stem Cells Promote Wound Healing and Skin Regeneration by Modulating Multiple Cellular Changes: A Brief Review
    Zhang, Weiyuan
    Ling, Yang
    Sun, Yang
    Xiao, Fengjun
    Wang, Lisheng
    GENES, 2023, 14 (08)
  • [23] Small extracellular vesicles derived from mesenchymal stem/stromal cells as drug-delivery tools for anti-cancer drugs
    Klimova, Daniela
    Pastorakova, Andrea
    Tomka, Miroslav
    Altaner, Cestmir
    Repiska, Vanda
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2024, 99
  • [24] Small extracellular vesicles derived from PD-L1-modified mesenchymal stem cell promote Tregs differentiation and prolong allograft survival
    Ou, Qifeng
    Dou, Xiaolin
    Tang, Juyu
    Wu, Panfeng
    Pan, Ding
    CELL AND TISSUE RESEARCH, 2022, 389 (03) : 465 - 481
  • [25] Extracellular Vesicles from NMN Preconditioned Mesenchymal Stem Cells Ameliorated Myocardial Infarction via miR-210-3p Promoted Angiogenesis
    Pu, Yanan
    Li, Chunyu
    Qi, Xin
    Xu, Rui
    Dong, Liyang
    Jiang, Yi
    Gong, Qingyun
    Wang, Di
    Cheng, Rong
    Zhang, Cheng
    Chen, Yan
    STEM CELL REVIEWS AND REPORTS, 2023, 19 (04) : 1051 - 1066
  • [26] miR-330-5p in Small Extracellular Vesicles Derived From Plastrum testudinis-Preconditioned Bone Mesenchymal Stem Cells Attenuates Osteogenesis by Modulating Wnt/β-Catenin Signaling
    Li, Xiaoyun
    Cui, Yan
    Lin, Qing
    Wang, Panpan
    Chen, Rumeng
    Zhu, Xiaofeng
    Yang, Li
    Zhang, Ronghua
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [27] Exosomal miR-21-5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1
    Qi, Jin
    Zhang, Ruihao
    Wang, Yapeng
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021, 25 (23) : 11016 - 11030
  • [28] Extracellular vesicles derived from LPS-preconditioned human synovial mesenchymal stem cells inhibit extracellular matrix degradation and prevent osteoarthritis of the knee in a mouse model
    Duan, Ao
    Shen, Kai
    Li, Beichen
    Li, Cong
    Zhou, Hao
    Kong, Renyi
    Shao, Yuqi
    Qin, Jian
    Yuan, Tangbo
    Ji, Juan
    Guo, Wei
    Wang, Xipeng
    Xue, Tengfei
    Li, Lei
    Huang, Xinxin
    Sun, Yuqin
    Cai, Zhenyu
    Liu, Wei
    Liu, Feng
    STEM CELL RESEARCH & THERAPY, 2021, 12 (01)
  • [29] CD73-Positive Small Extracellular Vesicles Derived From Umbilical Cord Mesenchymal Stem Cells Promote the Proliferation and Migration of Pediatric Urethral Smooth Muscle Cells Through Adenosine Pathway
    Zhang, Shilin
    Li, Jierong
    Li, Chunjing
    Xie, Xumin
    He, Jun
    Ling, Fengsheng
    Li, Bowei
    Wu, Huayan
    Li, Zhilin
    Zheng, Jianwei
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [30] Extracellular vesicles derived from hypoxia-preconditioned bone marrow mesenchymal stem cells ameliorate lower limb ischemia by delivering miR-34c
    Peng, Xitao
    Liu, Junhua
    Ren, Lijun
    Liang, Bing
    Wang, Haisheng
    Hou, Jingyuan
    Yuan, Qidong
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2023, 478 (07) : 1645 - 1658