miR-381-abundant small extracellular vesicles derived from kartogenin-preconditioned mesenchymal stem cells promote chondrogenesis of MSCs by targeting TAOK1

被引:52
作者
Jing, Hui [1 ,2 ]
Zhang, Xiaoyang [1 ]
Luo, Kai [1 ]
Luo, Qiancheng [1 ]
Yin, Meng [1 ]
Wang, Wei [1 ]
Zhu, Zhongqun [1 ]
Zheng, Jinghao [1 ]
He, Xiaomin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Shanghai Childrens Med Ctr, Dept Cardiothorac Surg, 1678 Dong Fang Rd, Shanghai 200127, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Med, Shanghai Gen Hosp, Dept Thorac Surg, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Small extracellular vesicles; Mesenchymal stem cells; Kartogenin; Chondrogenesis; miRNA; STROMAL CELLS; EXOSOMES; DIFFERENTIATION; CHONDROCYTES; MICRORNAS;
D O I
10.1016/j.biomaterials.2019.119682
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Small extracellular vesicles (sEVs) derived from mesenchymal stem cells have been shown to possess potent regenerative potential. In this study, we evaluated the chondrogenic effect of sEVs derived from kartogenin-preconditioned human umbilical cord mesenchymal stem cells (hUCMSCs). sEVs were isolated from the supernatants of KGN-preconditioned hUCMSCs (KGN-sEV) by gradient ultra-centrifugation, and internalized by native hUCMSCs, thereby inducing the chondrogenic differentiation. The underlying mechanism of KGN-sEV-induced chondrogenesis was explored by high-throughput sequencing and verified by transfection with the corresponding mimic and inhibitor. Sequencing identified the unique enrichment of a set of miRNAs in KGN-sEV compared with sEVs derived from unpreconditioned cells (un-sEV). Overexpression/inhibition in vitro and in vivo demonstrated that this chondrogenesis-inducing potential was primarily attributed to miR-381-3p, one of the most abundant miRNAs in KGN-sEV. Dual-luciferase reporter assays showed that miR-381-3p promoted chondrogenesis through direct suppression of TAOK1 by targeting its 3' untranslated region, thereby suppressing the Hippo signaling pathway. Collectively, our results highlight the regenerative potential of KGN-sEV to induce chondrogenic differentiation of MSCs, which is mainly achieved by delivering sEV-miR-381-3p, which targets TAOK1.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] SMALL EXTRACELLULAR VESICLE-MIR-381 DERIVED FROM KARTOGENIN-PRECONDITIONED MESENCHYMAL STEM CELLS PROMOTE CHONDROGENESIS
    He, Xiaomin
    Jing, Hui
    Zheng, Jinghao
    TISSUE ENGINEERING PART A, 2022, 28 : S84 - S84
  • [2] miR-27a-5p-Abundant Small Extracellular Vesicles Derived From Epimedium-Preconditioned Bone Mesenchymal Stem Cells Stimulate Osteogenesis by Targeting Atg4B-Mediated Autophagy
    Li, Xiaoyun
    Chen, Rumeng
    Li, Yunchuan
    Wang, Panpan
    Cui, Yan
    Yang, Li
    Zhu, Xiaofeng
    Zhang, Ronghua
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [3] Exosomes Derived From Kartogenin-Preconditioned Mesenchymal Stem Cells Promote Cartilage Formation and Collagen Maturation for Enthesis Regeneration in a Rat Model of Chronic Rotator Cuff Tear
    Cai, Jiangyu
    Xu, Junjie
    Ye, Zipeng
    Wang, Liren
    Zheng, Ting
    Zhang, Tianlun
    Li, Yufeng
    Jiang, Jia
    Zhao, Jinzhong
    AMERICAN JOURNAL OF SPORTS MEDICINE, 2023, 51 (05) : 1267 - 1276
  • [4] DUAL MODIFICATION APPROACHES FOR AUGMENTING THE TARGETING EFFICIENCY OF SMALL EXTRACELLULAR VESICLES DERIVED FROM MESENCHYMAL STEM CELLS
    Mendiratta, M.
    Mendiratta, M.
    Sahoo, R.
    Malhotra, N.
    Mohanty, S.
    CYTOTHERAPY, 2024, 26 (06) : S82 - S82
  • [5] Small Extracellular Vesicles Containing miR-34c Derived from Bone Marrow Mesenchymal Stem Cells Regulates Epithelial Sodium Channel via Targeting MARCKS
    Hua, Yu
    Han, Aixin
    Yu, Tong
    Hou, Yapeng
    Ding, Yan
    Nie, Hongguang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [6] Secretive derived from hypoxia preconditioned mesenchymal stem cells promote cartilage regeneration and mitigate joint inflammation via extracellular vesicles
    Yang, Yanmeng
    Wu, Yingnan
    Yang, Dahou
    Neo, Shu Hui
    Kadir, Nurul Dinah
    Goh, Doreen
    Tan, Jian Xiong
    Denslin, Vinitha
    Lee, Eng Hin
    Yang, Zheng
    BIOACTIVE MATERIALS, 2023, 27 : 98 - 112
  • [7] Effect of extracellular vesicles derived from hypoxia-preconditioned human mesenchymal stem cells on osteoblastogenesis and adipogenesis in vitro
    Jimenez-Navarro, Carolina
    Torrecillas-Baena, Barbara
    Camacho-Cardenosa, Marta
    Quesada-Gomez, Jose Manuel
    Galvez-Moreno, Maria angeles
    Casado-Diaz, Antonio
    REVISTA DE OSTEOPOROSIS Y METABOLISMO MINERAL, 2023, 15 (02) : 54 - 65
  • [8] Small extracellular vesicles derived from sequential stimulation of canine adipose-derived mesenchymal stem cells enhance anti-inflammatory activity
    Oontawee, Saranyou
    Siriarchavatana, Parkpoom
    Rodprasert, Watchareewan
    Padeta, Irma
    Pamulang, Yudith Violetta
    Somparn, Poorichaya
    Pisitkun, Trairak
    Nambooppha, Boondarika
    Sthitmatee, Nattawooti
    Na Nan, Daneeya
    Osathanon, Thanaphum
    Egusa, Hiroshi
    Sawangmake, Chenphop
    BMC VETERINARY RESEARCH, 2025, 21 (01)
  • [9] The Role of Small Extracellular Vesicles Derived from Lipopolysaccharide-preconditioned Human Dental Pulp Stem Cells in Dental Pulp Regeneration
    Chen, Wen-Jin
    Xie, Jing
    Lin, Xi
    Ou, Ming-Hang
    Zhou, Jun
    Wei, Xiao-Lang
    Chen, Wen-Xia
    JOURNAL OF ENDODONTICS, 2021, 47 (06) : 961 - 969
  • [10] Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612
    Ge, Lite
    Xun, Chengfeng
    Li, Wenshui
    Jin, Shengyu
    Liu, Zuo
    Zhuo, Yi
    Duan, Da
    Hu, Zhiping
    Chen, Ping
    Lu, Ming
    JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)