AN ITERATIVE ALGORITHM BASED ON SIMPSON METHODS FOR SOLVING FIXED POINT PROBLEM OF NONEXPANSIVE MAPPINGS

被引:0
作者
He, Long [1 ]
Zhu, Li-Jun [2 ,3 ]
Fu, Yuanmin [1 ]
机构
[1] North Minzu Univ, Sch Math & Informat Sci, Yinchuan 750021, Ningxia, Peoples R China
[2] Key Lab Intelligent Informat & Data Proc NingXia, Yinchuan 750021, Ningxia, Peoples R China
[3] North Minzu Univ, Yinchuan 750021, Ningxia, Peoples R China
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2021年 / 83卷 / 03期
基金
中国国家自然科学基金;
关键词
nonexpansive mapping; Simpson methods; weak convergence; fixed point; SEMIIMPLICIT EULER METHODS; IMPLICIT MIDPOINT RULE; VARIATIONAL INEQUALITY; SYSTEMS; CONVERGENCE; OPERATORS; EQUATIONS; SCHEME;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fixed point methods have been studied extensively by the Scholars. The purpose of this paper is to suggest an iterative algorithm based on Simpson methods for solving fixed point problem of nonexpansive mappings in Hilbert spaces. Weak convergence of the presented methods has been proved for finding fixed points of nonexpansive mappings.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 41 条
[1]   The implicit midpoint rule for nonexpansive mappings [J].
Alghamdi, Maryam A. ;
Alghamdi, Mohammad Ali ;
Shahzad, Naseer ;
Xu, Hong-Kun .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[2]  
[Anonymous], 2018, NUMER ALGORITHMS
[3]   ASYMPTOTIC ERROR EXPANSIONS FOR STIFF EQUATIONS - AN ANALYSIS FOR THE IMPLICIT MIDPOINT AND TRAPEZOIDAL RULES IN THE STRONGLY STIFF CASE [J].
AUZINGER, W ;
FRANK, R .
NUMERISCHE MATHEMATIK, 1989, 56 (05) :469-499
[4]   A SEMI-IMPLICIT MIDPOINT RULE FOR STIFF SYSTEMS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
BADER, G ;
DEUFLHARD, P .
NUMERISCHE MATHEMATIK, 1983, 41 (03) :373-398
[5]   SYSTEMS OF VARIATIONAL INEQUALITIES WITH HIERARCHICAL VARIATIONAL INEQUALITY CONSTRAINTS FOR LIPSCHITZIAN PSEUDOCONTRACTIONS [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2019, 20 (01) :113-133
[6]   HYBRID VISCOSITY EXTRAGRADIENT METHOD FOR SYSTEMS OF VARIATIONAL INEQUALITIES, FIXED POINTS OF NONEXPANSIVE MAPPINGS, ZERO POINTS OF ACCRETIVE OPERATORS IN BANACH SPACES [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2018, 19 (02) :487-+
[7]   RECENT PROGRESS IN EXTRAPOLATION METHODS FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
DEUFLHARD, P .
SIAM REVIEW, 1985, 27 (04) :505-535
[8]   Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations [J].
Fan, Zhencheng ;
Liu, Mingzhu ;
Cao, Wanrong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) :1142-1159
[9]  
Goebel K, 1990, CAMBRIDGE STUDIES AD, V28
[10]   Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions [J].
Groisman, P .
COMPUTING, 2006, 76 (3-4) :325-352