A membraneless microfluidic fuel cell stack

被引:63
作者
Salloum, Kamil S. [1 ]
Posner, Jonathan D. [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
关键词
Microfluidic fuel cell; Membraneless fuel cell; Flow battery; Fuel utilization; Reactant recycling; Stacked fuel cell; PROTON-EXCHANGE MEMBRANE; HYDROGEN; METHANOL; DEGRADATION; PERFORMANCE; CROSSOVER; SILICON; DURABILITY; ALKALINE; PLANAR;
D O I
10.1016/j.jpowsour.2010.08.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A membraneless microfluidic fuel cell stack architecture is presented that reuses reactants from one cell to a subsequent one, analogous to PEMFC stacks. On-chip reactant reuse improves fuel utilization and power densities relative to single cells. The reactants flow separately through porus electrodes and interface with a non-reacting and conductive electrolyte which maintains their separation. The reactants remain separated downstream of the interface and are used in subsequent downstream cells. This fuel cell uses porous carbon for electrocatalysts and vanadium redox species as reactants with a sulfuric acid supporting electrolyte. The overall power density of the fuel cell increases with reactant flow rate and decreasing the separating electrolyte flow rate. The peak power, maximum fuel utilization, and efficiency nearly double when electrically connecting the cells in parallel. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1229 / 1234
页数:6
相关论文
共 70 条
[1]  
[Anonymous], 2001, TRANSPORT PHENOMENA
[2]  
[Anonymous], 2009, J AM CHEM SOC, DOI DOI 10.1021/JA906434C
[3]   Improved fuel utilization in microfluidic fuel cells: A computational study [J].
Bazylak, A ;
Sinton, D ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2005, 143 (1-2) :57-66
[4]   Investigation of fuel and media flexible laminar low-based fuel cells [J].
Brushett, Fikile R. ;
Jayashree, Ranga S. ;
Zhou, Wei-Ping ;
Kenis, Paul J. A. .
ELECTROCHIMICA ACTA, 2009, 54 (27) :7099-7105
[5]   Alkaline Microfluidic Hydrogen-Oxygen Fuel Cell as a Cathode Characterization Platform [J].
Brushett, Fikile R. ;
Zhou, Wei-Ping ;
Jayashree, Ranga S. ;
Kenis, Paul J. A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (05) :B565-B571
[6]   Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping [J].
Buie, Cullen R. ;
Posner, Jonathan D. ;
Fabian, Tibor ;
Cha, Suk-Won ;
Kim, Daejoong ;
Prinz, Fritz B. ;
Eaton, John K. ;
Santiago, Juan G. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :191-202
[7]   A numerical study of cell-to-cell variations in a SOFC stack [J].
Burt, AC ;
Celik, IB ;
Gemmen, RS ;
Smirnov, AV .
JOURNAL OF POWER SOURCES, 2004, 126 (1-2) :76-87
[8]   Aluminum-anode, silicon-based micro-cells for powering expendable MEMS and lab-on-a-chip devices [J].
Cardenas-Valencia, A. M. ;
Dlutowski, J. ;
Knighton, S. ;
Biver, C. J. ;
Bumgarner, J. ;
Langebrake, L. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 122 (01) :328-336
[9]   Analysis of membraneless formic acid microfuel cell using a planar microchannel [J].
Chen, Falin ;
Chang, Min-Hsing ;
Lin, Mu-Kun .
ELECTROCHIMICA ACTA, 2007, 52 (07) :2506-2514
[10]   Hydrogen crossover in high-temperature PEM fuel cells [J].
Cheng, Xuan ;
Zhang, Jianlu ;
Tang, Yanghua ;
Song, Chaojie ;
Shen, Jun ;
Song, Datong ;
Zhang, Jiujun .
JOURNAL OF POWER SOURCES, 2007, 167 (01) :25-31