Eikonal approximation to 5D wave equations as geodesic motion in a curved 4D spacetime

被引:2
作者
Oron, O [1 ]
Horwitz, LP
机构
[1] Bar Ilan Univ, Dept Phys, IL-529000 Ramat Gan, Israel
[2] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Ramat Aviv, Israel
关键词
geodesic motion; eikonal approximation; Fermat's principle;
D O I
10.1007/s10714-005-0038-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We first derive the relation between the eikonal approximation to the Maxwell wave equations in an inhomogeneous anisotropic medium and geodesic motion in a three dimensional Riemannian manifold using a method which identifies the symplectic structure of the corresponding mechanics. We then apply an analogous method to the five dimensional generalization of Maxwell theory required by the gauge invariance of Stueckelberg's covariant classical and quantum dynamics to demonstrate, in the eikonal approximation, the existence of geodesic motion for the flow of mass in a four dimensional pseudo-Riemannian manifold. No motion of the medium is required. These results provide a foundation for the geometrical optics of the five dimensional radiation theory and establish a model in which there is mass flow along geodesics. Finally, we discuss the interesting case of relativistic quantum theory in an anisotropic medium as well. In this case the eikonal approximation to the relativistic quantum mechanical current coincides with the geodesic flow governed by the pseudo-Riemannian metric obtained from the eikonal approximation to solutions of the Stueckelberg- Schrodinger equation. This construction provides a model for an underlying quantum mechanical structure for classical dynamical motion along geodesics on a pseudo-Riemannian manifold. The locally symplectic structure which emerges is that of Stueckelberg's covariant mechanics on this manifold.
引用
收藏
页码:491 / 506
页数:16
相关论文
共 35 条