CDnet 2014: An Expanded Change Detection Benchmark Dataset

被引:531
作者
Wang, Yi [1 ]
Jodoin, Pierre-Marc [1 ]
Porikli, Fatih [2 ]
Konrad, Janusz [4 ]
Benezeth, Yannick [3 ]
Ishwar, Prakash [4 ]
机构
[1] Univ Sherbrooke, CREI, Sherbrooke, PQ J1K 2R1, Canada
[2] Australian Natl Univ, NICTA, Canberra, ACT 2601, Australia
[3] Univ Bourgogne, Le2i, F-21078 Dijon, France
[4] Boston Univ, Dept ECE, Boston, MA 02215 USA
来源
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW) | 2014年
关键词
DETECTION ALGORITHMS; DENSITY-ESTIMATION;
D O I
10.1109/CVPRW.2014.126
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Change detection is one of the most important low-level tasks in video analytics. In 2012, we introduced the changedetection. net (CDnet) benchmark, a video dataset devoted to the evalaution of change and motion detection approaches. Here, we present the latest release of the CDnet dataset, which includes 22 additional videos (similar to 70,000 pixel-wise annotated frames) spanning 5 new categories that incorporate challenges encountered in many surveillance settings. We describe these categories in detail and provide an overview of the results of more than a dozen methods submitted to the IEEE Change Detection Workshop 2014. We highlight strengths and weaknesses of these methods and identify remaining issues in change detection.
引用
收藏
页码:393 / +
页数:3
相关论文
共 32 条
[1]  
[Anonymous], 2014, 2ND IEEE CHANGE DETE, P5
[2]  
[Anonymous], 2014, Background modeling and foreground detection for video surveillance
[3]  
[Anonymous], 2012, AS C COMP VIS
[4]  
Bashir F., 2006, PROC IEEE INT WORKSH, P3
[5]   Comparative study of background subtraction algorithms [J].
Benezeth, Yannick ;
Jodoin, Pierre-Marc ;
Emile, Bruno ;
Laurent, Helene ;
Rosenberger, Christophe .
JOURNAL OF ELECTRONIC IMAGING, 2010, 19 (03)
[6]  
Bouwmans T., 2011, RECENT PATENTS COMPU, V4
[7]  
Bouwmans T., 2008, Recent Patents Comput. Sci., V1, P219, DOI 10.2174/1874479610801030219
[8]  
Brutzer S., 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P1937, DOI 10.1109/CVPR.2011.5995508
[9]   Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J].
Elgammal, A ;
Duraiswami, R ;
Harwood, D ;
Davis, LS .
PROCEEDINGS OF THE IEEE, 2002, 90 (07) :1151-1163
[10]  
Goyette N., 2012, IEEE CVPR CHANGE DET, p[1, 2, 3, 5]