Optic Disc and Cup Segmentation for Glaucoma Characterization Using Deep Learning

被引:24
作者
Kim, Jongwoo [1 ]
Loc Tran [1 ]
Chew, Emily Y. [2 ]
Antani, Sameer [1 ]
机构
[1] NIH, Lister Hill Natl Ctr Biomed Commun, Natl Lib Med, Bldg 10, Bethesda, MD 20892 USA
[2] NEI, Div Epidemiol & Clin Applicat, NIH, Bethesda, MD 20892 USA
来源
2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) | 2019年
基金
美国国家卫生研究院;
关键词
Glaucoma; Region of Interest (ROI); Optic Disc; Cup; Deep Learning; Fully Convolutional Neural Networks (FCN); U-Net;
D O I
10.1109/CBMS.2019.00100
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Glaucoma is one of the most common eye diseases that can cause irreversible vision loss due to damage to the optic nerve. Ophthalmologists consider a cup to optic disc ratio greater than 0.3 to be suggestive of glaucoma. Unfortunately, there is high variability among ophthalmologists in estimating the ratio since it is not easy to reliably measure optic disc and cup areas in a fundus image. Therefore, this paper proposes automatic methods to segment the optic disc and cup areas. There are two steps to estimate the ratio: region of interest (ROI) area detection (where optic disc is in the center) from a fundus image, followed by optic disc and cup segmentation. This paper focuses on automated methods to segment the optic disc and cup from the ROI. Fully convolutional networks (FCN) with U-Net architectures are used for the segmentation. The RIGA dataset (composed of three different fundus image datasets: MESSIDOR, Bin Rushed, and Magrabi), containing 750 fundus images, is used to train and test the FCNs. Our proposed FCNs show relatively better performance than other existing algorithms. The best segmentation results for optic disc show 0.95 Jaccard index, 0.98 F-measure, and 0.99 accuracy. The best segmentation results for cup show 0.80 Jaccard index, 0.88 F-measure, and 0.99 accuracy.
引用
收藏
页码:489 / 494
页数:6
相关论文
共 16 条
[1]   Dense Fully Convolutional Segmentation of the Optic Disc and Cup in Colour Fundus for Glaucoma Diagnosis [J].
Al-Bander, Baidaa ;
Williams, Bryan M. ;
Al-Nuaimy, Waleed ;
Al-Taee, Majid A. ;
Pratt, Harry ;
Zheng, Yalin .
SYMMETRY-BASEL, 2018, 10 (04)
[2]   Agreement among ophthalmologists in marking the optic disc and optic cup in fundus images [J].
Almazroa, Ahmed ;
Alodhayb, Sami ;
Osman, Essameldin ;
Ramadan, Eslam ;
Hummadi, Mohammed ;
Dlaim, Mohammed ;
Alkatee, Muhannad ;
Raahemifar, Kaamran ;
Lakshminarayanan, Vasudevan .
INTERNATIONAL OPHTHALMOLOGY, 2017, 37 (03) :701-717
[3]  
Almazroa A, 2017, CLIN OPHTHALMOL, V11, P841, DOI 10.2147/OPTH.S117157
[4]   Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening [J].
Cheng, Jun ;
Liu, Jiang ;
Xu, Yanwu ;
Yin, Fengshou ;
Wong, Damon Wing Kee ;
Tan, Ngan-Meng ;
Tao, Dacheng ;
Cheng, Ching-Yu ;
Aung, Tin ;
Wong, Tien Yin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (06) :1019-1032
[5]  
Fu H., 2018, IEEE T MED IMAGING, V37
[6]  
Kim J., 2019, SPIE MED IMAGING
[7]   Region of Interest Detection in Fundus Images Using Deep Learning and Blood Vessel Information [J].
Kim, Jongwoo ;
Candemir, Sema ;
Thoma, George R. ;
Chew, Emily Y. .
2018 31ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS 2018), 2018, :357-362
[8]   Integrated Optic Disc and Cup Segmentation with Deep Learning [J].
Lim, Gilbert ;
Cheng, Yuan ;
Hsu, Wynne ;
Lee, Mong Li .
2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, :162-169
[9]   Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images [J].
Marin, Diego ;
Gegundez-Arias, Manuel E. ;
Suero, Angel ;
Bravo, Jose M. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 118 (02) :173-185
[10]   Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology [J].
Morales, Sandra ;
Naranjo, Valery ;
Angulo, Jesus ;
Alcaniz, Mariano .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (04) :786-796