Weakly Periodic Gibbs Measures in the HC-Model for a Normal Divisor of Index Four

被引:5
作者
Khakimov, R. M. [1 ]
机构
[1] Uzbekistan Natl Univ, Inst Math, Tashkent, Uzbekistan
关键词
HARD-CORE MODEL; CAYLEY TREE; ISING-MODEL; STATE;
D O I
10.1007/s11253-016-1174-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an HC-model on a Cayley tree. Under certain restrictions imposed on the parameters of the HC-model, we prove the existence of weakly periodic (nonperiodic) Gibbs measures for a normal divisor of index four.
引用
收藏
页码:1584 / 1598
页数:15
相关论文
共 18 条
[1]  
BLEHER P.M., 1990, THEOR PROBAB APPL, V35, P216, DOI [10.1137/1135031, DOI 10.1137/1135031.]
[2]   ON THE PURITY OF THE LIMITING GIBBS STATE FOR THE ISING-MODEL ON THE BETHE LATTICE [J].
BLEHER, PM ;
RUIZ, J ;
ZAGREBNOV, VA .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (1-2) :473-482
[3]   On Ising Model with Four Competing Interactions on Cayley Tree [J].
Ganikhodjaev, N. N. ;
Rozikov, U. A. .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2009, 12 (02) :141-156
[4]  
Ganikhodjaev NN., 1997, TEOR MAT FIZ, V111, P109, DOI [DOI 10.4213/tmf993, 10.1007/BF02634202]
[5]  
Georgii H-O., 1988, Gibbs measures and phase transitions
[6]   Uniqueness of weakly periodic Gibbs measure for HC-models [J].
Khakimov, R. M. .
MATHEMATICAL NOTES, 2013, 94 (5-6) :834-838
[7]   A three state hard-core model on a Cayley tree [J].
Martin, J ;
Rozikov, U ;
Suhov, Y .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (03) :432-448
[8]   On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras II [J].
Mukhamedov, F ;
Rozikov, U .
JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (1-2) :427-446
[9]  
Preston C.J., 1974, Cambridge Tracts Math., V68
[10]   Gibbs measures for SOS models on a Cayley tree [J].
Rozikov, U. A. ;
Suhov, Y. M. .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2006, 9 (03) :471-488