Genetic algorithm-based training for semi-supervised SVM

被引:25
|
作者
Adankon, Mathias M. [1 ]
Cheriet, Mohamed [1 ]
机构
[1] Univ Quebec, Ecole Technol Super, Synchromedia Lab, Montreal, PQ H3C 1K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Semi-supervised learning; Genetic algorithm; Support vector machine; SVM;
D O I
10.1007/s00521-010-0358-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Support Vector Machine (SVM) is an interesting classifier with excellent power of generalization. In this paper, we consider applying the SVM to semi-supervised learning. We propose using an additional criterion with the standard formulation of the semi-supervised SVM (S (3) VM) to reinforce classifier regularization. Since, we deal with nonconvex and combinatorial problem, we use a genetic algorithm to optimize the objective function. Furthermore, we design the specific genetic operators and certain heuristics in order to improve the optimization task. We tested our algorithm on both artificial and real data and found that it gives promising results in comparison with classical optimization techniques proposed in literature.
引用
收藏
页码:1197 / 1206
页数:10
相关论文
共 50 条
  • [31] Feature selection for semi-supervised multi-target regression using genetic algorithm
    Syed, Farrukh Hasan
    Tahir, Muhammad Atif
    Rafi, Muhammad
    Shahab, Mir Danish
    APPLIED INTELLIGENCE, 2021, 51 (12) : 8961 - 8984
  • [32] Feature selection for semi-supervised multi-target regression using genetic algorithm
    Farrukh Hasan Syed
    Muhammad Atif Tahir
    Muhammad Rafi
    Mir Danish Shahab
    Applied Intelligence, 2021, 51 : 8961 - 8984
  • [33] Fast semi-supervised SVM classifiers using a priori metric information
    Vural, Volkan
    Fung, Glenn
    Dy, Jennifer G.
    Rao, Bharat
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (04) : 521 - 532
  • [34] New SDP models for protein homology detection with semi-supervised SVM
    Bai, Y. Q.
    Niu, B. L.
    Chen, Y.
    OPTIMIZATION, 2013, 62 (04) : 561 - 572
  • [35] Manifold adversarial training for supervised and semi-supervised learning
    Zhang, Shufei
    Huang, Kaizhu
    Zhu, Jianke
    Liu, Yang
    NEURAL NETWORKS, 2021, 140 : 282 - 293
  • [36] A novel co-training object tracking algorithm based on online semi-supervised boosting
    Chen, Si
    Su, Song-Zhi
    Li, Shao-Zi
    Lü, Yan-Ping
    Cao, Dong-Lin
    Li, S.-Z. (szlig@xmu.edu.cn), 1600, Science Press (36): : 888 - 895
  • [37] Semi-Supervised Learning Algorithm Based on AFS Theory and LogitBoost Algorithm
    Gao, Peng
    Liu, Xiaodong
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2501 - 2506
  • [38] Semi-supervised active learning image classification method based on Tri-Training algorithm
    Zhang, Yongjun
    Yan, Siyu
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 206 - 210
  • [39] Semi-supervised Genetic Programming for Classification
    Arcanjo, Filipe de L.
    Pappa, Gisele L.
    Bicalho, Paulo V.
    Meira, Wagner, Jr.
    da Silva, Altigran S.
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1259 - 1266
  • [40] Semi-Supervised Based Training Set Construction For Outlier Detection
    Zhou, Xu
    Zhao, Pengpeng
    Liu, Yuanliu
    Cui, Zhiming
    2013 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CLOUDCOM-ASIA), 2013, : 450 - 454