Genetic algorithm-based training for semi-supervised SVM

被引:25
|
作者
Adankon, Mathias M. [1 ]
Cheriet, Mohamed [1 ]
机构
[1] Univ Quebec, Ecole Technol Super, Synchromedia Lab, Montreal, PQ H3C 1K3, Canada
来源
NEURAL COMPUTING & APPLICATIONS | 2010年 / 19卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
Semi-supervised learning; Genetic algorithm; Support vector machine; SVM;
D O I
10.1007/s00521-010-0358-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Support Vector Machine (SVM) is an interesting classifier with excellent power of generalization. In this paper, we consider applying the SVM to semi-supervised learning. We propose using an additional criterion with the standard formulation of the semi-supervised SVM (S (3) VM) to reinforce classifier regularization. Since, we deal with nonconvex and combinatorial problem, we use a genetic algorithm to optimize the objective function. Furthermore, we design the specific genetic operators and certain heuristics in order to improve the optimization task. We tested our algorithm on both artificial and real data and found that it gives promising results in comparison with classical optimization techniques proposed in literature.
引用
收藏
页码:1197 / 1206
页数:10
相关论文
共 50 条
  • [1] Genetic algorithm–based training for semi-supervised SVM
    Mathias M. Adankon
    Mohamed Cheriet
    Neural Computing and Applications, 2010, 19 : 1197 - 1206
  • [2] Performance Evaluation of SVM Based Semi-supervised Classification Algorithm
    Chaudhari, Narendra S.
    Tiwari, Aruna
    Thomas, Jaya
    2008 10TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION: ICARV 2008, VOLS 1-4, 2008, : 1942 - +
  • [3] A Novel Semi-supervised SVM Based on Tri-training for Intrusition Detection
    Li, Jimin
    Zhang, Wei
    Li, KunLun
    JOURNAL OF COMPUTERS, 2010, 5 (04) : 638 - 645
  • [4] A SEMI-SUPERVISED COLLABORATION-TRAINING BASED ON GENETIC ALGORITHM FOR UN LABELED DATA SELECTION
    Guo, Tao
    Li, Guiyang
    Lan, Xia
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 825 - 830
  • [5] GENETIC ALGORITHM CLASSIFIER SYSTEM FOR SEMI-SUPERVISED LEARNING
    Miller, L. Dee
    Soh, Leen-Kiat
    Scott, Stephen
    COMPUTATIONAL INTELLIGENCE, 2015, 31 (02) : 201 - 232
  • [6] Semi-supervised clustering ensemble based on genetic algorithm model
    Bi, Sheng
    Li, Xiangli
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55851 - 55865
  • [7] Semi-supervised clustering ensemble based on genetic algorithm model
    Sheng Bi
    Xiangli Li
    Multimedia Tools and Applications, 2024, 83 : 55851 - 55865
  • [8] Estimating Age on Twitter Using Self-Training Semi-Supervised SVM
    Iju, Tatsuyuki
    Endo, Satoshi
    Yamada, Koji
    Toma, Naruaki
    Akamine, Yuhei
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2016), 2016, : 228 - 231
  • [9] Estimating Age on Twitter Using Self-Training Semi-Supervised SVM
    Iju, Tatsuyuki
    Endo, Satoshi
    Yamada, Koji
    Toma, Naruaki
    Akamine, Yuhei
    JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2016, 3 (01): : 24 - 27
  • [10] Data preprocessing in semi-supervised SVM classification
    Astorino, A.
    Gorgone, E.
    Gaudioso, M.
    Pallaschke, D.
    OPTIMIZATION, 2011, 60 (1-2) : 143 - 151