Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors

被引:90
作者
Cichonska, Anna [1 ,2 ]
Ravikumar, Balaguru [2 ]
Parri, Elina [2 ]
Timonen, Sanna [2 ]
Pahikkala, Tapio [3 ]
Airola, Antti [3 ]
Wennerberg, Krister [2 ]
Rousu, Juho [1 ]
Aittokallio, Tero [2 ,4 ]
机构
[1] Aalto Univ, Dept Comp Sci, HIIT, Espoo, Finland
[2] Univ Helsinki, FIMM, Helsinki, Finland
[3] Univ Turku, Dept Informat Technol, Turku, Finland
[4] Univ Turku, Dept Math & Stat, Turku, Finland
基金
芬兰科学院;
关键词
INTERACTION PREDICTION; IDENTIFICATION; FEATURES; NETWORK; KERNELS; SPACE; TOOL;
D O I
10.1371/journal.pcbi.1005678
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based modeling approach offers practical benefits for probing novel insights into the mode of action of investigational compounds, and for the identification of new target selectivities for drug repurposing applications.
引用
收藏
页数:28
相关论文
共 61 条
[1]   Drug-target interaction prediction through domain-tuned network-based inference [J].
Alaimo, Salvatore ;
Pulvirenti, Alfredo ;
Giugno, Rosalba ;
Ferro, Alfredo .
BIOINFORMATICS, 2013, 29 (16) :2004-2008
[2]   Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity [J].
Anastassiadis, Theonie ;
Deacon, Sean W. ;
Devarajan, Karthik ;
Ma, Haiching ;
Peterson, Jeffrey R. .
NATURE BIOTECHNOLOGY, 2011, 29 (11) :1039-U117
[3]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[4]   The ChEMBL bioactivity database: an update [J].
Bento, A. Patricia ;
Gaulton, Anna ;
Hersey, Anne ;
Bellis, Louisa J. ;
Chambers, Jon ;
Davies, Mark ;
Krueger, Felix A. ;
Light, Yvonne ;
Mak, Lora ;
McGlinchey, Shaun ;
Nowotka, Michal ;
Papadatos, George ;
Santos, Rita ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1083-D1090
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   Predictive Models for Fast and Effective Profiling of Kinase Inhibitors [J].
Bora, Alina ;
Avram, Sorin ;
Ciucanu, Ionel ;
Raica, Marius ;
Avram, Stefana .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (05) :895-905
[7]  
Bosc N, 2017, 2 5D KINOCHEMOMETRIC, V57, P93
[8]   Fast metabolite identification with Input Output Kernel Regression [J].
Brouard, Celine ;
Shen, Huibin ;
Duehrkop, Kai ;
d'Alche-Buc, Florence ;
Boecker, Sebastian ;
Rousu, Juho .
BIOINFORMATICS, 2016, 32 (12) :28-36
[9]   IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding [J].
Cer, R. Z. ;
Mudunuri, U. ;
Stephens, R. ;
Lebeda, F. J. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W441-W445
[10]   Classification of small molecules by two- and three-dimensional decomposition kernels [J].
Ceroni, Alessio ;
Costa, Fabrizio ;
Frasconi, Paolo .
BIOINFORMATICS, 2007, 23 (16) :2038-2045