Meta-learning-based optical vector beam high-fidelity communication under high scattering

被引:5
作者
Chen, Wenhui [1 ,2 ]
He, Hexiang [1 ,2 ]
Lin, Qian [1 ,2 ]
Chen, Weicheng [1 ,2 ]
Su, Zhikun [1 ,2 ]
Cai, Bingye [1 ,2 ]
Zhu, Wenguo [3 ]
Zhang, Li [1 ,2 ]
机构
[1] Foshan Univ, Sch Phys & Optoelect Engn, Foshan 528225, Peoples R China
[2] Foshan Univ, Guangdong Hong Kong Macao Joint Lab Intelligent M, Foshan 528225, Peoples R China
[3] Jinan Univ, Dept Optoelect Engn, Key Lab Optoelect Informat & Sensing Technol Guan, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
MODES;
D O I
10.1364/OL.461655
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
While spatial structured light based free space optical communication provides high-bandwidth communication with broad application prospect, severe signal distortion caused by optical scattering from ambient microparticles in the atmosphere can lead to data degradation. A deep-learning-based adaptive demodulator has been demonstrated to resolve the information encoded in the severely distorted channel, but the high generalization ability for different scattering always requires prohibitive costs on data preparation and reiterative training. Here, we demonstrate a meta-learning-based auto-encoder demodulator, which learns from prior theoretical knowledge, and then training with only three realistic samples per class can rectify and recognize transmission distortion. By employing such a demodulator to hybrid vector beams, high fidelity communication can be established, and data costs are reduced when faced with different scattering channels. In a proof-of-principle experiment, an image with 256 gray values is transmitted under severe scattering with an error ratio of less than 0.05%. Our work opens the door to high-fidelity optical communication in random media environments. (C) 2022 Optica Publishing Group
引用
收藏
页码:3131 / 3134
页数:4
相关论文
共 34 条
  • [1] Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces
    Arbabi, Ehsan
    Kamali, Seyedeh Mahsa
    Arbabi, Amir
    Faraon, Andrei
    [J]. ACS PHOTONICS, 2018, 5 (08): : 3132 - 3140
  • [2] Free-space optical communications
    Chan, Vincent W. S.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) : 4750 - 4762
  • [3] On the resilience of scalar and vector vortex modes in turbulence
    Cox, Mitchell A.
    Rosales-Guzman, Carmelo
    Lavery, Martin P. J.
    Versfeld, Daniel J.
    Forbes, Andrew
    [J]. OPTICS EXPRESS, 2016, 24 (16): : 18105 - 18113
  • [4] Multifunctional geometric phase optical element for high-efficiency full Stokes imaging polarimetry
    Dai, Yanmeng
    Zhang, Yuquan
    Xie, Youpeng
    Wang, Dapeng
    Wang, Xianyou
    Lei, Ting
    Min, Changjun
    Yuan, Xiaocong
    [J]. PHOTONICS RESEARCH, 2019, 7 (09) : 1066 - 1074
  • [5] Finn C, 2017, PR MACH LEARN RES, V70
  • [6] Transmission of vector vortex beams in dispersive media
    Gianani, Ilaria
    Suprano, Alessia
    Giordani, Taira
    Spagnolo, Nicolo
    Sciarrino, Fabio
    Gorpas, Dimitris
    Ntziachristos, Vasilis
    Pinker, Katja
    Biton, Netanel
    Kupferman, Judy
    Arnon, Shlomi
    [J]. ADVANCED PHOTONICS, 2020, 2 (03):
  • [7] Free-space information transfer using light beams carrying orbital angular momentum
    Gibson, G
    Courtial, J
    Padgett, MJ
    Vasnetsov, M
    Pas'ko, V
    Barnett, SM
    Franke-Arnold, S
    [J]. OPTICS EXPRESS, 2004, 12 (22): : 5448 - 5456
  • [8] Machine Learning-Based Classification of Vector Vortex Beams
    Giordani, Taira
    Suprano, Alessia
    Polino, Emanuele
    Acanfora, Francesca
    Innocenti, Luca
    Ferraro, Alessandro
    Paternostro, Mauro
    Spagnolo, Nicolo
    Sciarrino, Fabio
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [9] Optical orbital-angular-momentum-multiplexed data transmission under high scattering
    Gong, Lei
    Zhao, Qian
    Zhang, Hao
    Hu, Xin-Yao
    Huang, Kun
    Yang, Jia-Miao
    Li, Yin-Mei
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
  • [10] A survey of deep meta-learning
    Huisman, Mike
    van Rijn, Jan N.
    Plaat, Aske
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (06) : 4483 - 4541