Heat shock-induced ascorbic acid accumulation in leaves increases cadmium tolerance of rice (Oryza sativa L.) seedlings

被引:23
|
作者
Chao, Yun-Yang [1 ]
Kao, Ching Huei [1 ]
机构
[1] Natl Taiwan Univ, Dept Agron, Taipei, Taiwan
关键词
Ascorbic acid; Cadmium; Heat shock; Hydrogen peroxide; Oryza sativa L; Oxidative stress; INDUCED OXIDATIVE STRESS; HYDROGEN-PEROXIDE; GLUTATHIONE; PROTECTION; PLANTS; EXPRESSION; RESPONSES; TOXICITY; BIOSYNTHESIS; CHLOROPLASTS;
D O I
10.1007/s11104-010-0438-7
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Ascorbic acid (AsA) is the most abundant antioxidant in plants and plays a role in responding to oxidative stress. It has been shown that AsA plays a role in protecting against abiotic stresses. Rice seedlings stressed with 5 mu M CdCl2 showed typical Cd toxicity (chlorosis and increase in malondialdehyde content). Rice seedlings pretreated with heat shock at 45A degrees C (HS) or H2O2 under non-HS conditions resulted in the increase in ascorbic acid (AsA) content and the AsA/dehydroascorbate ratio in rice leaves. Exogenous application of AsA or L-galactonone-1, 4-lactone (GalL), a biosynthetic precursor of AsA, under non-HS conditions, which resulted in an increase in AsA content in leaves, enhanced subsequent Cd tolerance of rice seedlings. Pretreatment with imidazole, an inhibitor of NADPH oxidase, under HS conditions significantly decreased H2O2 and AsA contents in leaves and reduced subsequent Cd tolerance of rice seedlings. We also observed that pretreatment with lycorine, which is known to inhibit the conversion of GalL to AsA, significantly inhibited HS-induced AsA accumulation in leaves and reduced HS-induced protection against subsequent Cd stress of rice stress. It appears that HS- or H2O2-induced protection against subsequent Cd stress of rice seedlings is mediated through AsA. The time-course analyses of HS in rice seedlings demonstrated that the accumulation of H2O2 preceded the increase in AsA. Based on the data obtained in this study, it could be concluded that the early accumulation of H2O2 during HS signals the increase in AsA content, which in turn protects rice seedlings from oxidative damage caused by Cd.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 50 条
  • [41] QTL analysis of mercury tolerance and accumulation at the seedling stage in rice (Oryza sativa L.)
    Yu, You Jian
    Hu, Hai Tao
    Wang, Chang Chun
    Yang, Ling
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2011, 9 (02): : 748 - 752
  • [42] Rice (Oryza sativa L.) seedlings enriched with zinc or manganese: Their impacts on cadmium accumulation and expression of related genes
    Huang, Gaoxiang
    Ding, Changfeng
    Ma, Yibing
    Wang, Yurong
    Zhou, Zhigao
    Zheng, Shun'an
    Wang, Xingxiang
    PEDOSPHERE, 2021, 31 (06) : 849 - 858
  • [43] Sulfur alleviates cadmium toxicity in rice (Oryza sativa L.) seedlings by altering antioxidant levels
    Jung H.-I.
    Lee B.-R.
    Chae M.-J.
    Kong M.-S.
    Lee C.-H.
    Kang S.-S.
    Kim Y.-H.
    Journal of Crop Science and Biotechnology, 2017, 20 (3) : 213 - 220
  • [44] Ammonium enhances the tolerance of rice seedlings (Oryza sativa L.) to drought condition
    Li, Yong
    Gao, Yingxu
    Ding, Lei
    Shen, Qirong
    Guo, Shiwei
    AGRICULTURAL WATER MANAGEMENT, 2009, 96 (12) : 1746 - 1750
  • [45] Underlying mechanisms and effects of hydrated lime and selenium application on cadmium uptake by rice (Oryza sativa L.) seedlings
    Huang, Gaoxiang
    Ding, Changfeng
    Guo, Fuyu
    Li, Xiaogang
    Zhang, Taolin
    Wang, Xingxiang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (23) : 18926 - 18935
  • [46] Effects of Microplastics on the Mineral Elements Absorption and Accumulation in Hydroponic Rice Seedlings (Oryza sativa L.)
    Tang, Mingfeng
    Huang, Yongchuang
    Zhang, Wei
    Fu, Tingting
    Zeng, Tingting
    Huang, Yongdong
    Yang, Xiaoxia
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2022, 108 (05) : 949 - 955
  • [47] A combined strategy to mitigate the accumulation of arsenic and cadmium in rice (Oryza sativa L.)
    Han, Ruixia
    Wang, Zhe
    Wang, Shuqing
    Sun, Guoxin
    Xiao, Zufei
    Hao, Yilong
    Nriagu, Jerome
    Teng, H. Henry
    Li, Gang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 896
  • [48] Mechanisms of chloride to promote the uptake and accumulation of cadmium in rice (Oryza sativa L.)
    Guo, Jingxia
    Ge, Chenghao
    Wang, Guo
    Zhou, Dongmei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 926
  • [49] Knockout of cadmium sensitive gene 1 confers enhanced cadmium tolerance in rice (Oryza sativa L.) by regulating the subcellular distribution of cadmium
    Liang, Shanshan
    Lan, Zhipeng
    Wang, Jiahan
    Zou, Wenli
    Hu, Youchuan
    Ran, Hongyu
    Qin, Mao
    Xiao, Gui
    Zhang, Siju
    Ma, Xuan
    Ye, Guoyou
    Luan, Weijiang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 306
  • [50] Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings
    Shaw, Arun Kumar
    Hossain, Zahed
    CHEMOSPHERE, 2013, 93 (06) : 906 - 915