Heat shock-induced ascorbic acid accumulation in leaves increases cadmium tolerance of rice (Oryza sativa L.) seedlings

被引:23
|
作者
Chao, Yun-Yang [1 ]
Kao, Ching Huei [1 ]
机构
[1] Natl Taiwan Univ, Dept Agron, Taipei, Taiwan
关键词
Ascorbic acid; Cadmium; Heat shock; Hydrogen peroxide; Oryza sativa L; Oxidative stress; INDUCED OXIDATIVE STRESS; HYDROGEN-PEROXIDE; GLUTATHIONE; PROTECTION; PLANTS; EXPRESSION; RESPONSES; TOXICITY; BIOSYNTHESIS; CHLOROPLASTS;
D O I
10.1007/s11104-010-0438-7
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Ascorbic acid (AsA) is the most abundant antioxidant in plants and plays a role in responding to oxidative stress. It has been shown that AsA plays a role in protecting against abiotic stresses. Rice seedlings stressed with 5 mu M CdCl2 showed typical Cd toxicity (chlorosis and increase in malondialdehyde content). Rice seedlings pretreated with heat shock at 45A degrees C (HS) or H2O2 under non-HS conditions resulted in the increase in ascorbic acid (AsA) content and the AsA/dehydroascorbate ratio in rice leaves. Exogenous application of AsA or L-galactonone-1, 4-lactone (GalL), a biosynthetic precursor of AsA, under non-HS conditions, which resulted in an increase in AsA content in leaves, enhanced subsequent Cd tolerance of rice seedlings. Pretreatment with imidazole, an inhibitor of NADPH oxidase, under HS conditions significantly decreased H2O2 and AsA contents in leaves and reduced subsequent Cd tolerance of rice seedlings. We also observed that pretreatment with lycorine, which is known to inhibit the conversion of GalL to AsA, significantly inhibited HS-induced AsA accumulation in leaves and reduced HS-induced protection against subsequent Cd stress of rice stress. It appears that HS- or H2O2-induced protection against subsequent Cd stress of rice seedlings is mediated through AsA. The time-course analyses of HS in rice seedlings demonstrated that the accumulation of H2O2 preceded the increase in AsA. Based on the data obtained in this study, it could be concluded that the early accumulation of H2O2 during HS signals the increase in AsA content, which in turn protects rice seedlings from oxidative damage caused by Cd.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 50 条
  • [31] Seed Priming Improves Chilling Stress Tolerance in Rice ( Oryza sativa L.) Seedlings
    Tahjib-Ul-Arif, Md.
    Asaduzzaman, Md
    Shirazy, Bir Jahangir
    Khan, Md. Shihab Uddine
    Rahman, A. M. Sajedur
    Murata, Yoshiyuki
    Hamed, Sozan Abdel
    Latef, Arafat Abdel Hamed Abdel
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024, 93 (11) : 3013 - 3027
  • [32] Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant, rice (Oryza sativa L.) seedlings
    Kuo, MC
    Kao, CH
    BOTANICAL BULLETIN OF ACADEMIA SINICA, 2004, 45 (04): : 291 - 299
  • [33] Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems
    Mostofa, Mohammad Golam
    Fujita, Masayuki
    ECOTOXICOLOGY, 2013, 22 (06) : 959 - 973
  • [34] Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.)
    Xue, Dawei
    Chen, Mingcan
    Zhang, Guoping
    EUPHYTICA, 2009, 165 (03) : 587 - 596
  • [35] Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.)
    Dawei Xue
    Mingcan Chen
    Guoping Zhang
    Euphytica, 2009, 165
  • [36] Role of phosphate in drought stress regulation in developing rice (Oryza sativa L.) seedlings
    Barbhuiya, Imran Hussian
    Moulick, Debojyoti
    Hossian, Akbar
    Choudhury, Shuvasish
    CEREAL RESEARCH COMMUNICATIONS, 2024, 52 (02) : 531 - 544
  • [37] Heat shock pretreatment suppresses cadmium-induced ammonium ion accumulation and phenylalanine ammonia-lyase activity in rice seedling leaves
    Kuo, Chun-Ling
    Chao, Yun-Yang
    Kao, Ching Huei
    BOTANICAL STUDIES, 2011, 52 (04) : 471 - 478
  • [38] Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves
    Sanjib Kumar Panda
    Hemanta Kumar Patra
    Acta Physiologiae Plantarum, 2007, 29 : 567 - 575
  • [39] Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves
    Panda, Sanjib Kumar
    Patra, Hemanta Kumar
    ACTA PHYSIOLOGIAE PLANTARUM, 2007, 29 (06) : 567 - 575
  • [40] PREMATURE SENESCENCE LEAF 50 Promotes Heat Stress Tolerance in Rice (Oryza sativa L.)
    He, Yan
    Zhang, Xiaobo
    Shi, Yongfeng
    Xu, Xia
    Li, Liangjian
    Wu, Jian-Li
    RICE, 2021, 14 (01)