A rapid heating and high magnetic field thermal analysis technique

被引:0
|
作者
Kesler, Michael S. [1 ]
McGuire, Michael A. [1 ]
Conner, Ben [1 ]
Rios, Orlando [1 ,2 ]
Murphy, Bart [1 ]
Carter, William [1 ]
Henderson, Hunter B. [3 ]
Ludtka, Gerard M. [1 ]
Kisner, Roger A. [4 ]
机构
[1] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[2] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Aether Spectrum LLC, 3223 Meadowrun Lane, Knoxville, TN 37931 USA
关键词
Static magnetic field; Thermal analysis; Thermomagnetic processing; Transformation kinetics; PHASE-TRANSFORMATION; CALORIMETRY; KINETICS; DSC;
D O I
10.1007/s10973-021-11010-y
中图分类号
O414.1 [热力学];
学科分类号
摘要
A new thermal analysis technique is described that allows measurements to be performed on bulk samples at extreme heating and cooling rates and in high magnetic fields. High heating rates, up to 1000 degrees C min(-1), are achieved through electromagnetic induction heating of a custom-built apparatus fitted with commercial thermal analysis heads and sensor. Rapid cooling rates, up to 100 degrees C min(-1), are enabled by gas quenching and the small thermal mass of the induction furnace. The custom apparatus is designed to fit inside a superconducting magnet capable of fields up to 9 Tesla. This study demonstrates that the instrument is capable of collecting accurate thermal analysis data in high magnetic fields and rapidly acquiring data for dynamic processes. While the full potential of the technique is still unrealized, currently, it can provide insight into phenomena at time scales relevant to heat treatment in many industrial processes and into little understood effects of high magnetic field processing.
引用
收藏
页码:7449 / 7457
页数:9
相关论文
共 50 条
  • [1] A rapid heating and high magnetic field thermal analysis technique
    Michael S. Kesler
    Michael A. McGuire
    Ben Conner
    Orlando Rios
    Bart Murphy
    William Carter
    Hunter B. Henderson
    Gerard M. Ludtka
    Roger A. Kisner
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 7449 - 7457
  • [2] Thermal and magnetic field analysis of induction heating problems
    Kawaguchi, H
    Enokizono, M
    Todaka, T
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 161 (1-2) : 193 - 198
  • [3] Thermal magnetic characteristic for high frequency induction heating analysis
    Arita, H
    Todaka, T
    Enokizono, M
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) : 8317 - 8318
  • [4] Electromagnetic and thermal analysis of induction heating of billets by rotation in DC magnetic field
    Zlobina, Marina
    Nacke, Bernard
    Nikanorov, Alexander
    PRZEGLAD ELEKTROTECHNICZNY, 2008, 84 (11): : 111 - 114
  • [5] Joule heating in high magnetic field pulsars
    Urpin, V.
    Konenkov, D.
    ASTRONOMY & ASTROPHYSICS, 2008, 483 (01) : 223 - 230
  • [6] Electromagnetic and thermal analysis of the induction heating of aluminum billets rotating in DC magnetic field
    Araneo, R.
    Dughiero, F.
    Fabbri, M.
    Forzan, M.
    Geri, A.
    Morandi, A.
    Lupi, S.
    Ribani, P. L.
    Veca, G.
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2008, 27 (02) : 467 - 479
  • [7] Thermal analysis of magnetic shields for induction heating
    Sergeant, P.
    Hectors, D.
    Dupre, L.
    Van Reusel, K.
    IET ELECTRIC POWER APPLICATIONS, 2009, 3 (06) : 543 - 550
  • [8] Iron wool as a heating agent for magnetic catalysis: Experiments and analysis of heating properties under a high-frequency magnetic field
    Daccache, S.
    Ghosh, S.
    Marias, F.
    Chaudret, B.
    Carrey, J.
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (13)
  • [9] RAPID TECHNIQUE FOR THERMAL ANALYSIS OF PCB MODULES
    ZAPPULA, TM
    JOURNAL OF SPACECRAFT AND ROCKETS, 1971, 8 (11) : 1160 - &
  • [10] Analysis and control of heating of magnetic nanoparticles by adding a static magnetic field to an alternating magnetic field
    Sebastian, Armando Ramos
    Kim, Hyung Joon
    Kim, Sung Hoon
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (13)