共 46 条
CONVERGENCE AND DENSITY RESULTS FOR PARABOLIC QUASI-LINEAR VENTTSEL' PROBLEMS IN FRACTAL DOMAINS
被引:7
作者:
Creo, Simone
[1
]
Durante, Valerio Regis
[1
]
机构:
[1] Univ Roma Sapienza, Dipartimento Sci Base & Appl Ingn, Via A Scarpa 16, I-00161' Rome, Italy
来源:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S
|
2019年
/
12卷
/
01期
关键词:
Fractal surfaces;
density results;
asymptotic behavior;
Venttsel' problems;
nonlinear energy forms;
trace theorems;
varying Hilbert spaces;
p-Laplacian;
nonlinear semigroups;
HEAT-FLOW PROBLEMS;
DIRICHLET FORMS;
SOBOLEV SPACES;
APPROXIMATION;
BOUNDARY;
CURVE;
D O I:
10.3934/dcdss.2019005
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a three dimensional fractal cylindrical domain Q, whose lateral boundary is a fractal surface S. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove density results for the domains of energy functionals defined on Q and S. Then we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals.
引用
收藏
页码:65 / 90
页数:26
相关论文
共 46 条