CONVERGENCE AND DENSITY RESULTS FOR PARABOLIC QUASI-LINEAR VENTTSEL' PROBLEMS IN FRACTAL DOMAINS

被引:7
作者
Creo, Simone [1 ]
Durante, Valerio Regis [1 ]
机构
[1] Univ Roma Sapienza, Dipartimento Sci Base & Appl Ingn, Via A Scarpa 16, I-00161' Rome, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2019年 / 12卷 / 01期
关键词
Fractal surfaces; density results; asymptotic behavior; Venttsel' problems; nonlinear energy forms; trace theorems; varying Hilbert spaces; p-Laplacian; nonlinear semigroups; HEAT-FLOW PROBLEMS; DIRICHLET FORMS; SOBOLEV SPACES; APPROXIMATION; BOUNDARY; CURVE;
D O I
10.3934/dcdss.2019005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a three dimensional fractal cylindrical domain Q, whose lateral boundary is a fractal surface S. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove density results for the domains of energy functionals defined on Q and S. Then we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals.
引用
收藏
页码:65 / 90
页数:26
相关论文
共 46 条
  • [21] Global solutions for quasi-linear hyperbolic-parabolic coupled systems of thermoviscoelasticity
    Dharmawardane, P. M. N.
    Kawashima, S.
    Shibata, Y.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 405 : 76 - 102
  • [22] A quasi-linear Neumann problem of Ambrosetti-Prodi type on extension domains
    Velez-Santiago, Alejandro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 160 : 191 - 210
  • [23] Second-Order Regularity for Degenerate Parabolic Quasi-Linear Equations in the Heisenberg Group
    Yu, Chengwei
    Wang, Huiying
    Cui, Kunpeng
    Zhao, Zijing
    MATHEMATICS, 2024, 12 (22)
  • [24] A quasi-linear local variational iteration method for orbit transfer problems
    Feng, Haoyang
    Yue, Xiaokui
    Wang, Xuechuan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 119 (119)
  • [25] EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A QUASI-LINEAR HYPERBOLIC-PARABOLIC MODEL OF VASCULOGENESIS
    Di Russo, Cristiana
    Sepe, Alice
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (02) : 748 - 776
  • [26] OPTIMIZATION AND CONVERGENCE OF NUMERICAL ATTRACTORS FOR DISCRETE-TIME QUASI-LINEAR LATTICE SYSTEM
    Li, Yangrong
    Yang, Shuang
    Caraballo, Tomas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) : 905 - 928
  • [27] CONVERGENCE RATES OF THE SPLITTING SCHEME FOR PARABOLIC LINEAR STOCHASTIC CAUCHY PROBLEMS
    Cox, Sonja
    Van Neerven, Jan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 428 - 451
  • [28] PULLBACK ATTRACTORS FOR NON-AUTONOMOUS QUASI-LINEAR PARABOLIC EQUATIONS WITH DYNAMICAL BOUNDARY CONDITIONS
    Yang, Lu
    Yang, Meihua
    Kloeden, Peter E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (07): : 2635 - 2651
  • [29] Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic PDE's with a small parameter
    Freidlin, M.
    Koralov, L.
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (1-2) : 273 - 301
  • [30] SOME QUASI-LINEAR ELLIPTIC EQUATIONS WITH INHOMOGENEOUS GENERALIZED ROBIN BOUNDARY CONDITIONS ON "BAD" DOMAINS
    Biegert, Markus
    Warma, Mahamadi
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (9-10) : 893 - 924