CONVERGENCE AND DENSITY RESULTS FOR PARABOLIC QUASI-LINEAR VENTTSEL' PROBLEMS IN FRACTAL DOMAINS

被引:7
作者
Creo, Simone [1 ]
Durante, Valerio Regis [1 ]
机构
[1] Univ Roma Sapienza, Dipartimento Sci Base & Appl Ingn, Via A Scarpa 16, I-00161' Rome, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2019年 / 12卷 / 01期
关键词
Fractal surfaces; density results; asymptotic behavior; Venttsel' problems; nonlinear energy forms; trace theorems; varying Hilbert spaces; p-Laplacian; nonlinear semigroups; HEAT-FLOW PROBLEMS; DIRICHLET FORMS; SOBOLEV SPACES; APPROXIMATION; BOUNDARY; CURVE;
D O I
10.3934/dcdss.2019005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a three dimensional fractal cylindrical domain Q, whose lateral boundary is a fractal surface S. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove density results for the domains of energy functionals defined on Q and S. Then we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals.
引用
收藏
页码:65 / 90
页数:26
相关论文
共 46 条
[21]   Global solutions for quasi-linear hyperbolic-parabolic coupled systems of thermoviscoelasticity [J].
Dharmawardane, P. M. N. ;
Kawashima, S. ;
Shibata, Y. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 405 :76-102
[22]   A quasi-linear Neumann problem of Ambrosetti-Prodi type on extension domains [J].
Velez-Santiago, Alejandro .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 160 :191-210
[23]   Second-Order Regularity for Degenerate Parabolic Quasi-Linear Equations in the Heisenberg Group [J].
Yu, Chengwei ;
Wang, Huiying ;
Cui, Kunpeng ;
Zhao, Zijing .
MATHEMATICS, 2024, 12 (22)
[24]   EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A QUASI-LINEAR HYPERBOLIC-PARABOLIC MODEL OF VASCULOGENESIS [J].
Di Russo, Cristiana ;
Sepe, Alice .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (02) :748-776
[25]   A quasi-linear local variational iteration method for orbit transfer problems [J].
Feng, Haoyang ;
Yue, Xiaokui ;
Wang, Xuechuan .
AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 119 (119)
[26]   OPTIMIZATION AND CONVERGENCE OF NUMERICAL ATTRACTORS FOR DISCRETE-TIME QUASI-LINEAR LATTICE SYSTEM [J].
Li, Yangrong ;
Yang, Shuang ;
Caraballo, Tomas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) :905-928
[27]   CONVERGENCE RATES OF THE SPLITTING SCHEME FOR PARABOLIC LINEAR STOCHASTIC CAUCHY PROBLEMS [J].
Cox, Sonja ;
Van Neerven, Jan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :428-451
[28]   PULLBACK ATTRACTORS FOR NON-AUTONOMOUS QUASI-LINEAR PARABOLIC EQUATIONS WITH DYNAMICAL BOUNDARY CONDITIONS [J].
Yang, Lu ;
Yang, Meihua ;
Kloeden, Peter E. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (07) :2635-2651
[29]   Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic PDE's with a small parameter [J].
Freidlin, M. ;
Koralov, L. .
PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (1-2) :273-301
[30]   SOME QUASI-LINEAR ELLIPTIC EQUATIONS WITH INHOMOGENEOUS GENERALIZED ROBIN BOUNDARY CONDITIONS ON "BAD" DOMAINS [J].
Biegert, Markus ;
Warma, Mahamadi .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (9-10) :893-924