CONVERGENCE AND DENSITY RESULTS FOR PARABOLIC QUASI-LINEAR VENTTSEL' PROBLEMS IN FRACTAL DOMAINS

被引:7
|
作者
Creo, Simone [1 ]
Durante, Valerio Regis [1 ]
机构
[1] Univ Roma Sapienza, Dipartimento Sci Base & Appl Ingn, Via A Scarpa 16, I-00161' Rome, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2019年 / 12卷 / 01期
关键词
Fractal surfaces; density results; asymptotic behavior; Venttsel' problems; nonlinear energy forms; trace theorems; varying Hilbert spaces; p-Laplacian; nonlinear semigroups; HEAT-FLOW PROBLEMS; DIRICHLET FORMS; SOBOLEV SPACES; APPROXIMATION; BOUNDARY; CURVE;
D O I
10.3934/dcdss.2019005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a three dimensional fractal cylindrical domain Q, whose lateral boundary is a fractal surface S. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove density results for the domains of energy functionals defined on Q and S. Then we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals.
引用
收藏
页码:65 / 90
页数:26
相关论文
共 50 条
  • [1] Quasi-linear Venttsel' problems with nonlocal boundary conditions on fractal domains
    Lancia, Maria Rosaria
    Velez-Santiago, Alejandro
    Vernole, Paola
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 265 - 291
  • [2] A QUASI-LINEAR NONLOCAL VENTTSEL' PROBLEM OF AMBROSETTI-PRODI TYPE ON FRACTAL DOMAINS
    Lancia, Maria Rosaria
    Velez-Santiago, Alejandro
    Vernole, Paola
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (08) : 4487 - 4518
  • [3] Venttsel' problems in fractal domains
    Lancia, Maria Rosaria
    Vernole, Paola
    JOURNAL OF EVOLUTION EQUATIONS, 2014, 14 (03) : 681 - 712
  • [4] EXISTENCE RESULTS FOR SOME QUASI-LINEAR PARABOLIC PROBLEMS
    GRENON, N
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 165 : 281 - 313
  • [5] Venttsel’ problems in fractal domains
    Maria Rosaria Lancia
    Paola Vernole
    Journal of Evolution Equations, 2014, 14 : 681 - 712
  • [7] A CLASS OF PARABOLIC QUASI-LINEAR PROBLEMS
    ARTOLA, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5B (01): : 51 - 70
  • [8] AVERAGING OF QUASI-LINEAR PARABOLIC PROBLEMS IN DOMAINS WITH FINE-GRAINED BOUNDARY
    SKRYPNIK, IV
    DIFFERENTIAL EQUATIONS, 1995, 31 (02) : 327 - 339
  • [9] CONVERGENCE TO TRANSLATING SOLUTIONS FOR A CLASS OF QUASI-LINEAR PARABOLIC BOUNDARY-PROBLEMS
    ALTSCHULER, SJ
    WU, LF
    MATHEMATISCHE ANNALEN, 1993, 295 (04) : 761 - 765
  • [10] Nash equilibria for quasi-linear parabolic problems
    Oblitas, Orlando Noel Romero
    Ferrel, Juan Bautista Limaco
    de Carvalho, Pitagoras Pinheiro
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):