Quasi self-adjoint nonlinear wave equations

被引:30
作者
Ibragimov, N. H. [1 ]
Torrisi, M. [2 ]
Tracina, R. [2 ]
机构
[1] Blekinge Inst Technol, Dept Math & Sci, SE-37179 Karlskrona, Sweden
[2] Univ Catania, Dipartimento Matemat & Informat, I-95124 Catania, Italy
关键词
D O I
10.1088/1751-8113/43/44/442001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e. g. for constructing conservation laws associated with symmetries of the differential equation.
引用
收藏
页数:8
相关论文
共 8 条
[1]   A new conservation theorem [J].
Ibragimov, Nail H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :311-328
[2]   Integrating factors, adjoint equations and Lagrangians [J].
Ibragimov, NH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) :742-757
[3]  
Ibragimov NH, 2006, ARCH ALGA, V3, P53
[4]  
Ibragimov NH., 2007, Arch. ALGA, V4, P55
[5]   Differential invariants for quasi-linear and semi-linear wave-type equations [J].
Sophocleous, C. ;
Tracina, R. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) :216-228
[6]   On the linearization of semilinear wave equations [J].
Torrisi, M ;
Tracinà, R ;
Valenti, A .
NONLINEAR DYNAMICS, 2004, 36 (01) :97-106
[7]  
TORRISI M, 1993, MODERN GROUP ANALYSIS: ADVANCED ANALYTICAL AND COMPUTATIONAL METHODS IN MATHEMATICAL PHYSICS, P367
[8]  
Tracina R., 2004, Communications in Nonlinear Science and Numerical Simulation, V9, P127, DOI 10.1016/S1007-5704(03)00021-2