Spectral analysis of the complex cubic oscillator

被引:104
作者
Delabaere, E
Trinh, DT
机构
[1] Univ Angers, Dept Math, CNRS, UMR 6093, F-49045 Angers 01, France
[2] Coll Dalat, Dept Math, Dalat, Vietnam
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 48期
关键词
D O I
10.1088/0305-4470/33/48/314
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the 'exact semiclassical analysis', we study the spectrum of a one-parameter family of complex cubic oscillators. The PT-invariance property of the complex Hamiltonians and the reality property of the spectrum are discussed. Analytic continuations of the spectrum in the complex parameter and their connections with the resonance problem for the real cubic oscillator are investigated. The global analytic structure of the spectrum yields a branch point structure similar to the multivalued analytic structure discovered by Bender and Wu for the quartic oscillator.
引用
收藏
页码:8771 / 8796
页数:26
相关论文
共 39 条
[1]  
[Anonymous], 1978, METHODS MODERN MATH
[2]  
Bender C.M., 1978, Advanced mathematical methods for scientists and engineers
[3]   Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian [J].
Bender, CM ;
Dunne, GV .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :4616-4621
[4]   Model of supersymmetric quantum field theory with broken parity symmetry [J].
Bender, CM ;
Milton, KA .
PHYSICAL REVIEW D, 1998, 57 (06) :3595-3608
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[7]   HYPERASYMPTOTICS FOR INTEGRALS WITH SADDLES [J].
BERRY, MV ;
HOWLS, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1892) :657-675
[8]   Applying the linear δ expansion to the iφ3 interaction [J].
Blencowe, MP ;
Jones, HF ;
Korte, AP .
PHYSICAL REVIEW D, 1998, 57 (08) :5092-5099
[9]   Distributional Borel summability of odd anharmonic oscillators [J].
Caliceti, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (20) :3753-3770
[10]   PERTURBATION-THEORY OF ODD ANHARMONIC-OSCILLATORS [J].
CALICETI, E ;
GRAFFI, S ;
MAIOLI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (01) :51-66