Second-order gravitational self-force in a highly regular gauge

被引:19
作者
Upton, Samuel D. [1 ]
Pound, Adam [1 ,2 ]
机构
[1] Univ Southampton, Sch Math Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, STAG Res Ctr, Southampton SO17 1BJ, Hants, England
基金
英国科学技术设施理事会;
关键词
MULTIPOLE MOMENTS; PERTURBATIONS;
D O I
10.1103/PhysRevD.103.124016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Extreme-mass-ratio inspirals (EMRIs) will be key sources for LISA. However, accurately extracting system parameters from a detected EMRI waveform will require self-force calculations at second order in perturbation theory, which are still in a nascent stage. One major obstacle in these calculations is the strong divergences that are encountered on the worldline of the small object. Previously, it was shown by one of us [A. Pound, Nonlinear gravitational self-force: Second-order equation of motion, Phys. Rev. D 95, 104056 (2017)] that a class of "highly regular" gauges exist in which the singularities have a qualitatively milder form, promising to enable more efficient numerical calculations. Here we derive expressions for the metric perturbation in this class of gauges, in a local expansion in powers of distance r from the worldline, to sufficient order in r for numerical implementation in a puncture scheme. Additionally, we use the highly regular class to rigorously derive a distributional source for the second-order field and a pointlike second-order stress-energy tensor (the Detweiler stress energy) for the small object. This makes it possible to calculate the second-order self-force using mode-sum regularization rather than the more cumbersome puncture schemes that have been necessary previously. Although motivated by EMRIs, our calculations are valid in an arbitrary vacuum background, and they may help clarify the interpretation of point masses and skeleton sources in general relativity more broadly.
引用
收藏
页数:39
相关论文
共 81 条
[1]   Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data (vol 879, 10, 2019) [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. .
ASTROPHYSICAL JOURNAL, 2020, 899 (02)
[2]   GW190412: Observation of a binary-black-hole coalescence with asymmetric masses [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aich, A. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Ansoldi, S. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Asali, Y. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. .
PHYSICAL REVIEW D, 2020, 102 (04)
[3]   Fast frequency-domain algorithm for gravitational self-force: Circular orbits in Schwarzschild spacetime [J].
Akcay, Sarp .
PHYSICAL REVIEW D, 2011, 83 (12)
[4]  
Amaro-Seoane P., ARXIV170200786
[5]   Research Update on Extreme-Mass-Ratio Inspirals [J].
Amaro-Seoane, Pau ;
Gair, Jonathan R. ;
Pound, Adam ;
Hughes, Scott A. ;
Sopuerta, Carlos F. .
10TH INTERNATIONAL LISA SYMPOSIUM, 2015, 610
[6]   Quasicircular inspirals and plunges from nonspinning effective-one-body Hamiltonians with gravitational self-force information [J].
Antonelli, Andrea ;
van de Meent, Maarten ;
Buonanno, Alessandra ;
Steinhoff, Jan ;
Vines, Justin .
PHYSICAL REVIEW D, 2020, 101 (02)
[7]   Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals [J].
Babak, Stanislav ;
Gair, Jonathan ;
Sesana, Alberto ;
Barausse, Enrico ;
Sopuerta, Carlos F. ;
Berry, Christopher P. L. ;
Berti, Emanuele ;
Amaro-Seoane, Pau ;
Petiteau, Antoine ;
Klein, Antoine .
PHYSICAL REVIEW D, 2017, 95 (10)
[8]   Perturbations of Schwarzschild black holes in the Lorenz gauge: Formulation and numerical implementation [J].
Barack, L ;
Lousto, CO .
PHYSICAL REVIEW D, 2005, 72 (10)
[9]   Black holes, gravitational waves and fundamental physics: a roadmap [J].
Barack, Leor ;
Cardoso, Vitor ;
Nissanke, Samaya ;
Sotiriou, Thomas P. ;
Askar, Abbas ;
Belczynski, Chris ;
Bertone, Gianfranco ;
Bon, Edi ;
Blas, Diego ;
Brito, Richard ;
Bulik, Tomasz ;
Burrage, Clare ;
Byrnes, Christian T. ;
Caprini, Chiara ;
Chernyakova, Masha ;
Chrusciel, Piotr ;
Colpi, Monica ;
Ferrari, Valeria ;
Gaggero, Daniele ;
Gair, Jonathan ;
Garcia-Bellido, Juan ;
Hassan, S. F. ;
Heisenberg, Lavinia ;
Hendry, Martin ;
Heng, Ik Siong ;
Herdeiro, Carlos ;
Hinderer, Tanja ;
Horesh, Assaf ;
Kavanagh, Bradley J. ;
Kocsis, Bence ;
Kramer, Michael ;
Le Tiec, Alexandre ;
Mingarelli, Chiara ;
Nardini, Germano ;
Nelemans, Gijs ;
Palenzuela, Carlos ;
Pani, Paolo ;
Perego, Albino ;
Porter, Edward K. ;
Rossi, Elena M. ;
Schmidt, Patricia ;
Sesana, Alberto ;
Sperhake, Ulrich ;
Stamerra, Antonio ;
Stein, Leo C. ;
Tamanini, Nicola ;
Tauris, Thomas M. ;
Arturo Urena-Lopez, L. ;
Vincent, Frederic ;
Volonteri, Marta .
CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (14)
[10]   Self-force and radiation reaction in general relativity [J].
Barack, Leor ;
Pound, Adam .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)