Asymptotic behaviour of estimators of the parameters of nearly unstable INAR(1) models

被引:0
作者
Ispány, M [1 ]
Pap, G [1 ]
van Zuijlen, MCA [1 ]
机构
[1] Univ Debrecen, Inst Math & Informat, H-4012 Debrecen, Hungary
来源
FOUNDATIONS OF STATISTICAL INFERENCE | 2003年
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A sequence of first-order integer-valued autoregressive type (INAR(1)) processes is investigated, where the autoregressive type coefficients converge to 1. It is shown that the limiting distribution of the joint conditional least squares estimators for this coefficient and for the mean of the innovation is normal. Consequences for sequences of Galton-Watson branching processes with unobservable immigration, where the mean of the offspring distribution converges to 1 (which is the critical value), are discussed.
引用
收藏
页码:195 / 206
页数:12
相关论文
共 17 条
[1]  
Al-Osh M. A., 1987, J TIME SER ANAL, V8, P261, DOI DOI 10.1111/J.1467-9892.1987.TB00438.X
[2]   AN INTEGER-VALUED PTH-ORDER AUTOREGRESSIVE STRUCTURE (INAR(P)) PROCESS [J].
ALZAID, AA ;
ALOSH, M .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (02) :314-324
[3]  
[Anonymous], 1978, PROBABILITY THEORY
[4]   Asymptotic inference for spatial autoregression and orthogonality of Ornstein-Uhlenbeck sheets [J].
Arató, M ;
Pap, G ;
van Zuijlen, MCA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (1-2) :219-229
[5]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[6]  
Cardinal M, 1999, STAT MED, V18, P2025, DOI 10.1002/(SICI)1097-0258(19990815)18:15<2025::AID-SIM163>3.3.CO
[7]  
2-4
[8]   ASYMPTOTIC INFERENCE FOR NEARLY NONSTATIONARY AR(1) PROCESSES [J].
CHAN, NH ;
WEI, CZ .
ANNALS OF STATISTICS, 1987, 15 (03) :1050-1063
[9]  
DU JG, 1991, J TIME SER ANAL, V12, P129
[10]  
FRANKE J, 1993, DEV TIME SERIES ANAL, P310