Shear-horizontal surface acoustic wave characteristics of a (110) ZnO/SiO2/Si multilayer structure

被引:38
作者
Luo, Jingting [1 ]
Quan, Aojie [1 ]
Fu, Chen [2 ]
Li, Honglang [3 ]
机构
[1] Shenzhen Univ, Shenzhen Key Lab Sensor Technol, Coll Phys & Energy, Shenzhen 518060, Peoples R China
[2] Newcastle Univ, Inst Cellular Med, Newcastle Upon Tyne, Tyne & Wear, England
[3] Chinese Acad Sci, Inst Acoust, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Shear-wave; Liquid sensing application; TCF; (110) ZnO films; ZNO FILMS; TEMPERATURE COMPENSATION; BIOSENSOR APPLICATIONS; SAW; INTERLEUKIN-6; SENSORS; SILICON; MODES;
D O I
10.1016/j.jallcom.2016.09.118
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Shear-horizontal (SH) surface acoustic wave (SAW) propagation characteristics in IDT/(110) ZnO/SiO2/Si multilayered structure were theoretically investigated using 3-dimensions (3D) finite element analysis (FEA). X-ray diffraction result shows that the prepared ZnO films have preferred (110) orientation with its c-axis parallel to the substrate. 3D FEA results and the out of plane vibration experiment confirmed that SH-SAW was successfully excited in the multilayered structure. The phase velocities V-p, electromechanical coupling coefficients K-2, and temperature coefficient of frequency (TCF) dispersion properties of mode 0 were studied considering various thicknesses of ZnO and SiO2 thin films, which were verified by experiments. SiO2 film with a positive TCF not only compensate the negative TCF of the (110) ZnO but also enhance the K-2. A large K-2 of 3.37 and nearly zero TCF of -0.1 ppm/degrees C was achieved in SH-SAW device based on IDT/(110) ZnO(2 mu m)/SiO2(1 mu m)/Si multilayer structure, which is promising for high sensitive and temperature stable bio-sensing application. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:558 / 564
页数:7
相关论文
共 30 条
[1]   Temperature compensation of liquid FBAR sensors [J].
Bjurstrom, J. ;
Wingqvist, G. ;
Yantchev, V. ;
Katardjiev, I. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (03) :651-658
[2]   Determining biosensing modes in SH-SAW device using 3D finite element analysis [J].
Brookes, Jennifer ;
Bufacchi, Rory ;
Kondoh, Jun ;
Duffy, Dorothy M. ;
McKendry, Rachel A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 234 :412-419
[3]   An investigation of Love wave devices based on ZnO:Mg/LiNbO3 structure [J].
Chang, Ren-Chuan ;
Chu, Sheng-Yuan ;
Yeh, Po-Wen ;
Hong, Cheng-Shong ;
Huang, Hsin-Hsuan ;
Huang, Yi-Jen .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 132 (01) :312-318
[4]  
Emanetoglu NW, 2000, ULTRASON, P325, DOI 10.1109/ULTSYM.2000.922564
[5]   Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review [J].
Fu, Y. Q. ;
Luo, J. K. ;
Du, X. Y. ;
Flewitt, A. J. ;
Li, Y. ;
Markx, G. H. ;
Walton, A. J. ;
Milne, W. I. .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 143 (02) :606-619
[6]   Effect of viscoelastic film for shear horizontal surface acoustic wave on quartz [J].
Goto, Mikihiro ;
Yatsuda, Hiromi ;
Kondoh, Jun .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (07)
[7]   Ultraviolet sensing based on nanostructured ZnO/Si surface acoustic wave devices [J].
Guo, Y. J. ;
Zhao, C. ;
Zhou, X. S. ;
Li, Y. ;
Zu, X. T. ;
Gibson, D. ;
Fu, Y. Q. .
SMART MATERIALS AND STRUCTURES, 2015, 24 (12)
[8]   Properties of shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures [J].
Herrmann, F ;
Weihnacht, M ;
Büttgenbach, S .
ULTRASONICS, 1999, 37 (05) :335-341
[9]   Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device [J].
Kabir, K. M. Mohibul ;
Matthews, Glenn I. ;
Sabri, Ylias M. ;
Russo, Salvy P. ;
Ippolito, Samuel J. ;
Bhargava, Suresh K. .
SMART MATERIALS AND STRUCTURES, 2016, 25 (03)
[10]   An interleukin-6 ZnO/SiO2/Si surface acoustic wave biosensor [J].
Krishnamoorthy, Soumya ;
Iliadis, Agis A. ;
Bei, Thaleia ;
Chrousos, George P. .
BIOSENSORS & BIOELECTRONICS, 2008, 24 (02) :313-318