On higher index differential-algebraic equations in infinite dimensions

被引:7
作者
Trostorff, Sascha [1 ]
Waurick, Marcus [2 ]
机构
[1] Tech Univ Dresden, Fak Math, Inst Anal, Dresden, Germany
[2] Univ Strathclyde, Dept Math & Stat, Glasgow, Lanark, Scotland
来源
DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY | 2018年 / 268卷
关键词
Differential-algebraic equations; higher index; infinite-dimensional state space; consistent initial values; distributional solutions;
D O I
10.1007/978-3-319-75996-8_27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider initial value problems for differential-algebraic equations in a possibly infinite-dimensional Hilbert space. Assuming a growth condition for the associated operator pencil, we prove existence and uniqueness of solutions for arbitrary initial values in a distributional sense. Moreover, we construct a nested sequence of subspaces for initial values in order to obtain classical solutions.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 8 条
[1]   The quasi-Weierstrass form for regular matrix pencils [J].
Berger, Thomas ;
Ilchmann, Achim ;
Trenn, Stephan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) :4052-4069
[2]  
DAI L, 1989, LECT NOTES CONTR INF, V118, P1
[3]   A Hilbert Space Perspective on Ordinary Differential Equations with Memory Term [J].
Kalauch, Anke ;
Picard, Rainer ;
Siegmund, Stefan ;
Trostorff, Sascha ;
Waurick, Marcus .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2014, 26 (02) :369-399
[4]  
Kunkel P., 2006, Differential-Algebraic Equations. Analysis and Numerical Solution
[5]  
Picard R., 1989, PITMAN RES NOTES MAT, V196
[7]  
Rudin W., 1987, Real and Complex Analysis, V3
[8]  
Trostor S., 2017, EFFERENTIAL ALGEBRAI