Positive radial solutions of a mean curvature equation in Lorentz-Minkowski space with strong singularity

被引:4
作者
Pei, Minghe [1 ]
Wang, Libo [1 ]
机构
[1] Beihua Univ, Sch Math & Stat, Jilin, Peoples R China
关键词
Mean curvature equation; strong singularity; radial solution; Schauder fixed point theorem; existence and uniqueness; DIRICHLET PROBLEM; OPERATORS;
D O I
10.1080/00036811.2018.1555322
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and uniqueness of positive radial solutions are obtained for a mean curvature equation in Lorentz-Minkowski space of the form div (-del nu/root 1 - vertical bar del nu vertical bar(2)) + f(vertical bar x vertical bar, v) = 0 in Omega, v = 0 on partial derivative Omega, where Omega is a unit ball in R-N, f (r, u) may be singular at r= 0 and/or r= 1, and strongly singular at u= 0. The main tool is the perturbation technique and Schauder fixed point theorem.
引用
收藏
页码:1631 / 1637
页数:7
相关论文
共 16 条
[1]   Convexity of the solutions to the constant mean curvature spacelike surface equation in the Lorentz-Minkowski space [J].
Albujer, Alma L. ;
Caballero, Magdalena ;
Lopez, Rafael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (07) :2364-2374
[2]  
[Anonymous], 1986, REAL COMPLEX ANAL
[3]   On a prescribed mean curvature equation in Lorentz-Minkowski space [J].
Azzollini, A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (06) :1122-1140
[4]   Ground state solution for a problem with mean curvature operator in Minkowski space [J].
Azzollini, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :2086-2095
[5]  
Bereanu C, 2009, P AM MATH SOC, V137, P161
[6]  
Bereanu C, 2014, ADV NONLINEAR STUD, V14, P315
[7]   Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (04) :644-659
[8]   Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (01) :270-287
[9]   Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) :379-391
[10]  
Coelho I, 2014, TOPOL METHOD NONL AN, V44, P23