Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts

被引:6
作者
Lin, Huiming [1 ,2 ,3 ]
Fu, Bo [4 ,5 ]
Qin, Guoyou [1 ,2 ,3 ]
Zhu, Zhongyi [6 ]
机构
[1] Fudan Univ, Sch Publ Hlth, Dept Biostat, Shanghai 200032, Peoples R China
[2] Fudan Univ, Key Lab Publ Hlth Safety, Shanghai 200032, Peoples R China
[3] Fudan Univ, Collaborat Innovat Ctr Social Risks Governance Hl, Shanghai 200032, Peoples R China
[4] Fudan Univ, Sch Data Sci, Shanghai 200433, Peoples R China
[5] Univ Manchester, Ctr Biostat & Arthrit Res, UK Ctr Epidemiol, Manchester, Lancs, England
[6] Fudan Univ, Dept Stat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Doubly robust; Dropouts; Generalized partial linear models; Missing at random; CAUSAL INFERENCE MODELS; MISSING DATA; SEMIPARAMETRIC REGRESSION; REPEATED OUTCOMES; EFFICIENT;
D O I
10.1111/biom.12703
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study.
引用
收藏
页码:1132 / 1139
页数:8
相关论文
共 21 条
[1]   Doubly robust estimation in missing data and causal inference models [J].
Bang, H .
BIOMETRICS, 2005, 61 (04) :962-972
[2]   A comparison of multiple imputation and doubly robust estimation for analyses with missing data [J].
Carpenter, James R. ;
Kenward, Michael G. ;
Vansteelandt, Stijn .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2006, 169 :571-584
[3]   Generalized Partially Linear Models for Incomplete Longitudinal Data In the Presence of Population-Level Information [J].
Chen, Baojiang ;
Zhou, Xiao-Hua .
BIOMETRICS, 2013, 69 (02) :386-395
[4]  
Daniels MJ, 2008, MONOGR STAT APPL PRO, V109, P1
[5]   Robust estimation in generalized partial linear models for clustered data [J].
He, XM ;
Fung, WK ;
Zhu, ZY .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) :1176-1184
[6]   Health Assessment Questionnaire disability progression in early rheumatoid arthritis: Systematic review and analysis of two inception cohorts [J].
Norton, Sam ;
Fu, Bo ;
Scott, David L. ;
Deighton, Chris ;
Symmons, Deborah P. M. ;
Wailoo, Allan J. ;
Tosh, Jonathan ;
Lunt, Mark ;
Davies, Rebecca ;
Young, Adam ;
Verstappen, Suzanne M. M. .
SEMINARS IN ARTHRITIS AND RHEUMATISM, 2014, 44 (02) :131-144
[7]   The generalized estimating equation approach when data are not missing completely at random [J].
Paik, MC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1320-1329
[8]   A CAUTIONARY NOTE ON INFERENCE FOR MARGINAL REGRESSION-MODELS WITH LONGITUDINAL DATA AND GENERAL CORRELATED RESPONSE DATA [J].
PEPE, MS ;
ANDERSON, GL .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1994, 23 (04) :939-951
[9]  
Qin G., 2015, ANN I STAT MATH, P1
[10]   Robust estimation in generalized semiparametric mixed models for longitudinal data [J].
Qin, Guoyou ;
Zhu, Zhongyi .
JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (08) :1658-1683