Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects

被引:55
作者
Choi, Jong-ryul [1 ]
Kim, Seong-Min [2 ,3 ]
Ryu, Rae-Hyung [4 ]
Kim, Sung-Phil [5 ]
Sohn, Jeong-Woo [2 ,3 ]
机构
[1] DGMIF, Med Device Dev Ctr, Daegu 41061, South Korea
[2] Catholic Kwandong Univ, Dept Med Sci, Coll Med, Kangnung 25601, South Korea
[3] Catholic Kwandong Univ, Biomed Res Inst, Int St Marys Hosp, Incheon 21711, South Korea
[4] DGMIF, Lab Anim Ctr, Daegu 41061, South Korea
[5] UNIST, Dept Human Factors Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Implantable neural probes; Brain-machine interface; Multi-channel electrodes; Neural probes with advanced materials; IN-VIVO; COMPUTER INTERFACE; ELECTRODE ARRAY; MICROELECTRODE ARRAYS; ELECTRICAL RECORDINGS; MULTIUNIT RECORDINGS; CORTICAL CONTROL; OPTICAL CONTROL; GRAPHENE; MULTICHANNEL;
D O I
10.5607/en.2018.27.6.453
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
A brain-machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes.
引用
收藏
页码:453 / 471
页数:19
相关论文
共 160 条
  • [1] Conducting-Polymer Nanotubes Improve Electrical Properties, Mechanical Adhesion, Neural Attachment, and Neurite Outgrowth of Neural Electrodes
    Abidian, Mohammad Reza
    Corey, Joseph M.
    Kipke, Daryl R.
    Martin, David C.
    [J]. SMALL, 2010, 6 (03) : 421 - 429
  • [2] Adrian E D, 1929, J Physiol, V67, pi3
  • [3] Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration
    Ajiboye, A. Bolu
    Willett, Francis R.
    Young, Daniel R.
    Memberg, William D.
    Murphy, Brian A.
    Miller, Jonathan P.
    Walter, Benjamin L.
    Sweet, Jennifer A.
    Hoyen, Harry A.
    Keith, Michael W.
    Peckham, P. Hunter
    Simeral, John D.
    Donoghue, John P.
    Hochberg, Leigh R.
    Kirsch, Robert F.
    [J]. LANCET, 2017, 389 (10081) : 1821 - 1830
  • [4] Optetrode: a multichannel readout for optogenetic control in freely moving mice
    Anikeeva, Polina
    Andalman, Aaron S.
    Witten, Ilana
    Warden, Melissa
    Goshen, Inbal
    Grosenick, Logan
    Gunaydin, Lisa A.
    Frank, Loren M.
    Deisseroth, Karl
    [J]. NATURE NEUROSCIENCE, 2012, 15 (01) : 163 - U204
  • [5] Soft, Flexible Freestanding Neural Stimulation and Recording Electrodes Fabricated from Reduced Graphene Oxide
    Apollo, Nicholas V.
    Maturana, Matias I.
    Tong, Wei
    Nayagam, David A. X.
    Shivdasani, Mohit N.
    Foroughi, Javad
    Wallace, Gordon G.
    Prawer, Steven
    Ibbotson, Michael R.
    Garrett, David J.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (23) : 3551 - 3559
  • [6] An optical neural interface:: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology
    Aravanis, Alexander M.
    Wang, Li-Ping
    Zhang, Feng
    Meltzer, Leslie A.
    Mogri, Murtaza Z.
    Schneider, M. Bret
    Deisseroth, Karl
    [J]. JOURNAL OF NEURAL ENGINEERING, 2007, 4 (03) : S143 - S156
  • [7] A Battery-Powered Activity-Dependent Intracortical Microstimulation IC for Brain-Machine-Brain Interface
    Azin, Meysam
    Guggenmos, David J.
    Barbay, Scott
    Nudo, Randolph J.
    Mohseni, Pedram
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (04) : 731 - 745
  • [8] What limits the performance of current invasive brain machine interfaces?
    Baranauskas, Gytis
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2014, 8
  • [9] Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates
    Barz, F.
    Livi, A.
    Lanzilotto, M.
    Maranesi, M.
    Bonini, L.
    Paul, O.
    Ruther, P.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2017, 14 (03)
  • [10] Florida wireless implantable recording electrodes (FWIRE) for brain machine interfaces
    Bashirullah, Rizwan
    Harris, John G.
    Sanchez, Justin C.
    Nishida, Toshikazu
    Principe, Jose C.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 2084 - +