Predicting the fatigue life of an AlSi10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography

被引:45
作者
Nadot, Yves [1 ]
Nadot-Martin, Carole [1 ]
Kan, Wen Hao [2 ,3 ]
Boufadene, Sarah [1 ]
Foley, Matthew [2 ]
Cairney, Julie [2 ,3 ]
Proust, Gwenaelle [4 ]
Ridosz, Lionel [5 ]
机构
[1] Univ Poitiers, Inst Pprime, ISAE ENSMA, CNRS 86961, F-86961 Futuroscope, France
[2] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[4] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
[5] Zodiac Aerosp, Plaisir, France
关键词
AlSil0Mg; Fatigue; Lack of fusion; Fatigue life modelling; MECHANICAL-PROPERTIES; POROSITY FORMATION; MEAN STRESS; BEHAVIOR; DEFECTS; LIMIT; MICROSTRUCTURE; STRENGTH;
D O I
10.1016/j.addma.2019.100899
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A modelling strategy is proposed to evaluate the influence of defect morphology on the fatigue limit of additively manufactured Al alloys by: (i) obtaining an x-ray micro-Computed Tomography (mu-CT) 3D image of the material, (ii) computing the Equivalent Inertia Ellipsoid of each individual pore, (iii) modelling the influence of the defect on the fatigue limit through the Defect Stress Gradient (DSG) approach coupled to the Eshelby theory and, (iv) 3D mapping the criticality of each individual defect. For this fatigue study, an AlSi10Mg alloy was manufactured by laser powder bed fusion using sub-optimal deposition parameters in order to produce large lack-of-fusion defects. After a T6 heat treatment, tension-compression fatigue tests, with R = -1, were conducted on specimens oriented with their loading axis either parallel or normal to the Z-axis of the additive manufacturing equipment. Two samples were characterised before mu-CT testing in order to characterise the initial 3D defect population. Each sample was fatigued step by step in order to determine the fatigue limit. The fracture surface was observed in order to identify the critical defect in the initial mu-CT image. A comparison with the fatigue results led to the following conclusions: (i) when the longest axis of the defect is perpendicular to the loading axis, modelling the defect as an equivalent inertia prolate ellipsoid gives better results (5 % error on the fatigue limit) than modelling it as a simple equivalent sphere (22 % error on the fatigue limit), (ii) the prolate ellipsoid is not relevant when the longest axis of the defect is oriented along the loading axis; in this case an oblate equivalent ellipsoid should be used, (iii) the concept of 'size' for a complex 3D shaped defect should be linked to the inertia and the loading, (iv) with this approach, surface defects are shown to be more critical than internal ones for fatigue life and, (v) a 3D defect criticality map of the entire sample can be plotted to provide visual feedback on which defects are the most critical for fatigue life.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Study of Microstructure and Surface Morphology of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion
    Cui, Lujun
    Liu, Songyang
    Li, Xiaolei
    Wang, Mengle
    Guo, Shirui
    Cui, Yinghao
    Chen, Yongqian
    Liu, Jialin
    Zheng, Bo
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [12] The effects of microstructural and chemical surface gradients on fatigue performance of laser powder bed fusion AlSi10Mg
    Maleki, Erfan
    Bagherifard, Sara
    Unal, Okan
    Bandini, Michele
    Guagliano, Mario
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [13] Effect of heat treatment on the impact toughness and thermal properties of the AlSi10Mg alloy manufactured by laser powder bed fusion
    Kreethi, R.
    Sohn, Yongho
    Lee, Kee-Ahn
    PROGRESS IN ADDITIVE MANUFACTURING, 2024, 9 (02) : 543 - 551
  • [14] Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion
    Kempf, A.
    Hilgenberg, K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 776
  • [15] Effect of corrosion pit on fatigue damage and failure in powder bed fusion AlSi10Mg
    Song, Haipeng
    Liang, Rubi
    Jiang, Sheng
    Zhang, Hao
    Du, Juan
    Li, Dinghe
    Zhang, Qian
    Leen, Sean B.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (08) : 2803 - 2822
  • [16] In Situ Ageing with the Platform Preheating of AlSi10Mg Alloy Manufactured by Laser Powder-Bed Fusion Process
    Chambrin, Nicolas
    Dalverny, Olivier
    Cloue, Jean-Marc
    Brucelle, Olivier
    Alexis, Joel
    METALS, 2022, 12 (12)
  • [17] Microstructural consistency in the additive manufactured metallic materials: A study on the laser powder bed fusion of AlSi10Mg
    Hadadzadeh, Amir
    Amirkhiz, Babak Shalchi
    Langelier, Brian
    Li, Jian
    Mohammadi, Mohsen
    ADDITIVE MANUFACTURING, 2021, 46
  • [18] Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy
    Chu, Fuzhong
    Li, Erlei
    Shen, Haopeng
    Chen, Zhuoer
    Li, Yixin
    Liu, Hui
    Min, Shiling
    Tian, Xinni
    Zhang, Kai
    Zhou, Zongyan
    Zou, Ruiping
    Hou, Juan
    Wu, Xinhua
    Huang, Aijun
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 183 - 195
  • [19] Fatigue Improvement of AlSi10Mg Fabricated by Laser-Based Powder Bed Fusion through Heat Treatment
    Sajadi, Felix
    Tiemann, Jan-Marc
    Bandari, Nooshin
    Darabi, Ali Cheloee
    Mola, Javad
    Schmauder, Siegfried
    METALS, 2021, 11 (05)
  • [20] Corrosion Behavior of Heat-Treated AlSi10Mg Manufactured by Laser Powder Bed Fusion
    Cabrini, Marina
    Calignano, Flaviana
    Fino, Paolo
    Lorenzi, Sergio
    Lorusso, Massimo
    Manfredi, Diego
    Testa, Cristian
    Pastore, Tommaso
    MATERIALS, 2018, 11 (07):