Nanocrystalline hematite α-Fe2O3 synthesis with different precursors and their composites with graphene oxide

被引:26
作者
Rehman, Attiya [1 ]
Zulfiqar, Sonia [2 ]
Shakir, Imran [3 ]
Aboud, Mohamed F. Aly [3 ]
Shahid, Muhammad [4 ]
Warsi, Muhammad Farooq [1 ]
机构
[1] Islamia Univ Bahawalpur, Dept Chem, Baghdad Ul Jadeed Campus, Bahawalpur 63100, Pakistan
[2] Amer Univ Cairo, Sch Sci & Engn, Dept Chem, New Cairo 11835, Egypt
[3] King Saud Univ, Coll Engn, SET Ctr, POB 800, Riyadh 11421, Saudi Arabia
[4] Univ Hafr Al Batin, Coll Sci, Dept Chem, POB 1803, Hafar al Batin 31991, Saudi Arabia
关键词
Hematite; Nanoparticles; Photocatalysis; Graphene oxide; MAGNETIC-PROPERTIES; WATER; NANOPARTICLES; NANOCOMPOSITE; TEMPERATURE; GAMMA-FE2O3; PHOTOCATALYSIS; DEGRADATION; IMPACT; ROUTE;
D O I
10.1016/j.ceramint.2019.12.050
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The facile wet chemical co-precipitation method was used for synthesis of hematite (alpha-Fe2O3) nanoparticles and nanocomposites with graphene oxide (GO) using ethylenediaminetetraacetic acid (EDTA) and diethylene-triaminepentaacetic acid (DTPA) as different precursor materials. EDTA and DTPA acted as chelating agents to avoid multi nucleation and aggregation of nanoparticles in growth process. For nanocomposite, GO was considered as flexible material with theoretical specific surface area similar to 1000 m(2)/g and better surface functionalization due to presence of oxygen containing functional groups i.e. carboxylic, hydroxyl and epoxides groups at basal edge. The structural analysis of prepared nanoparticles and nanocomposites was conducted by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD confirmed various cell parameters and crystalline structure of prepared particles. The crystallite size was found 5 nm-10 nm. After preparation of nanocomposites of hematite alpha-Fe2O3 (EDTA or DTPA) nanoparticles with GO, they were characterized by Scanning electron microscopy (SEM) and UV-Visible spectroscopy. Current-Voltage (I-V) measurements were also carried out to observe the decrease in resistivity values after mixing with GO. UV-Visible spectroscopy revealed the better photocatalytic degradation of methylene blue (MB) in visible light. Degradation of methylene blue was observed up to 67% with alpha-Fe2O3 (DTPA) @ GO and 86.06% for alpha-Fe2O3 (EDTA) @ GO greater than simple alpha-Fe2O3 (DTPA) 21.2% and alpha-Fe2O3 (EDTA) 36.8% nanoparticles. As a result, synergistic effect of alpha-Fe2O3 (EDTA) @ GO showed better photocatalytic action due to GO layer, it acted as electron acceptor and kept high adsorption properties. Electrostatic bonding in alpha-Fe2O3 (EDTA) @ GO with MB having different functional groups showed the stability of photocatalyst, not to be leached into water. For prolonged time, the charge carrier recombination was suppressed for improved degradation rate of MB in visible light in presence of alpha-Fe2O3 (EDTA) @ GO.
引用
收藏
页码:8227 / 8237
页数:11
相关论文
共 50 条
[1]   Superior electrochemical activity of α-Fe2O3/rGO nanocomposite for advance energy storage devices [J].
Aadil, Muhammad ;
Shaheen, Wajeeha ;
Warsi, Muhammad Farooq ;
Shahid, Muhammad ;
Khan, Muhammad Azhar ;
Ali, Zahid ;
Haider, Sajjad ;
Shakir, Imran .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 689 :648-654
[2]   Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation [J].
Akhavan, O. ;
Azimirad, R. .
APPLIED CATALYSIS A-GENERAL, 2009, 369 (1-2) :77-82
[3]  
[Anonymous], 2019, CATAL TODAY
[4]   Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts [J].
Antoniadou, Maria ;
Daskalaki, Vasileia M. ;
Balis, Nikolaos ;
Kondarides, Dimitris I. ;
Kordulis, Christos ;
Lianos, Panagiotis .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 107 (1-2) :188-196
[5]   Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity [J].
Apte, S. K. ;
Naik, S. D. ;
Sonawane, R. S. ;
Kale, B. B. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (02) :412-414
[6]   Structural and magnetic properties of lower temperature calcined iron oxide nanoparticles [J].
Azam, M. ;
Akhtar, Kanwal ;
Riaz, Saira ;
Naseem, Shahzad .
MATERIALS TODAY-PROCEEDINGS, 2015, 2 (10) :5700-5704
[7]   Electrochemical Detection of Pb and Cu by Using DTPA Functionalized Magnetic Nanoparticles [J].
Bagherzadeh, Mojtaba ;
Pirmoradian, Meysam ;
Riahi, Fariborz .
ELECTROCHIMICA ACTA, 2014, 115 :573-580
[8]   Manipulation Over Phase Transformation in Iron Oxide Nanoparticles via Calcination Temperature and Their Effect on Magnetic and Dielectric Properties [J].
Bhavani, P. ;
Reddy, N. Ramamanohar ;
Reddy, I. Venkata Subba ;
Sakar, M. .
IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (09)
[9]   On the dehydration of mixed oxides powders coprecipitated from aqueous solutions [J].
Bujoreanu, VM ;
Segal, E .
SOLID STATE SCIENCES, 2001, 3 (04) :407-415
[10]   One pot solution combustion synthesis of highly mesoporous hematite for photocatalysis [J].
Cao, Zhiqin ;
Qin, Mingli ;
Jia, Baorui ;
Gu, Yueru ;
Chen, Pengqi ;
Volinsky, Alex A. ;
Qu, Xuanhui .
CERAMICS INTERNATIONAL, 2015, 41 (02) :2806-2812