Parameter estimation of the intensity process of self-exciting point processes using the EM algorithm

被引:9
|
作者
Mino, H [1 ]
机构
[1] Washington Univ, Electron Syst & Signals Res Lab, St Louis, MO 63130 USA
[2] Toho Univ, Dept Informat Sci, Chiba 2748510, Japan
关键词
EM algorithm; intensity process; Monte Carlo simulation; parameter estimation; self-exciting point process;
D O I
10.1109/19.930437
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a method of estimating the parameters of intensity processes in the self-exciting point process (SEPP) with the expectation-maximization (EM) algorithm. In the present paper, the case is considered where the intensity process of SEPPs is dependent only on the latest occurrence, i,e,, one-memory SEPPs, as well as where the impulse response function characterizing the intensity process is parameterized as a single exponential function having a constant coefficient that fakes a positive or negative value, i.e., making it possible to model a self "-exciting" or "-inhibiting" point process. Then, an explicit formula is derived for estimating the parameters specifying the intensity process on the basis of the EM algorithm, which in this instance gives the maximum likelihood (ML) estimates without solving nonlinear optimization problems In practical computations, the parameters of interest can he estimated from the histogram of time intervals between point events, Monte Carlo simulations illustrate the validity of the derived estimation formulas and procedures.
引用
收藏
页码:658 / 664
页数:7
相关论文
共 50 条
  • [31] Parameter estimation by fixed point of function of information processing intensity
    Jankowski, Robert
    Makowski, Marcin
    Piotrowski, Edward W.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 416 : 558 - 563
  • [32] Application of deterministic annealing EM algorithm to MAP/PH parameter estimation
    Okamura, Hiroyuki
    Kishikawa, Hidenari
    Dohi, Tadashi
    TELECOMMUNICATION SYSTEMS, 2013, 54 (01) : 79 - 90
  • [33] Application of EM Algorithm in Parameter Estimation of p‑Norm Mixture Model
    Peng F.
    Wang Z.
    Meng Q.
    Pan X.
    Qiu F.
    Yang Y.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2022, 47 (09): : 1432 - 1438
  • [34] Application of deterministic annealing EM algorithm to MAP/PH parameter estimation
    Hiroyuki Okamura
    Hidenari Kishikawa
    Tadashi Dohi
    Telecommunication Systems, 2013, 54 : 79 - 90
  • [35] The Hawkes process with renewal immigration & its estimation with an EM algorithm
    Wheatley, Spencer
    Filimonov, Vladimir
    Sornette, Didier
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 120 - 135
  • [36] Estimation of the Shape Parameter of Weibull Distribution based onType II Censored Data using EM Algorithm
    Kurniawan, A.
    Avicena, N.
    Ana, E.
    SYMPOSIUM ON BIOMATHEMATICS 2019 (SYMOMATH 2019), 2020, 2264
  • [37] Estimation of 2-and 3-parameter Burr Type XII distributions using EM algorithm
    Ismail, Nor Hidayah
    Khalid, Zarina Mohd
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2014, 10 (02): : 74 - 81
  • [38] Parameter estimation for grouped data using EM and MCEM algorithms
    AghahosseinaliShirazi, Zahra
    da Silva, Joao Pedro A. R.
    de Souza, Camila P. E.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3616 - 3637
  • [39] Rayleigh-Rice Mixture Parameter Estimation via EM Algorithm for Change Detection in Multispectral Images
    Zanetti, Massimo
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5004 - 5016
  • [40] Estimation on Lomax progressive censoring using the EM algorithm
    Helu, Amal
    Samawi, Hani
    Raqab, Mohammad Z.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (05) : 1035 - 1052