Parameter estimation of the intensity process of self-exciting point processes using the EM algorithm

被引:9
|
作者
Mino, H [1 ]
机构
[1] Washington Univ, Electron Syst & Signals Res Lab, St Louis, MO 63130 USA
[2] Toho Univ, Dept Informat Sci, Chiba 2748510, Japan
关键词
EM algorithm; intensity process; Monte Carlo simulation; parameter estimation; self-exciting point process;
D O I
10.1109/19.930437
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a method of estimating the parameters of intensity processes in the self-exciting point process (SEPP) with the expectation-maximization (EM) algorithm. In the present paper, the case is considered where the intensity process of SEPPs is dependent only on the latest occurrence, i,e,, one-memory SEPPs, as well as where the impulse response function characterizing the intensity process is parameterized as a single exponential function having a constant coefficient that fakes a positive or negative value, i.e., making it possible to model a self "-exciting" or "-inhibiting" point process. Then, an explicit formula is derived for estimating the parameters specifying the intensity process on the basis of the EM algorithm, which in this instance gives the maximum likelihood (ML) estimates without solving nonlinear optimization problems In practical computations, the parameters of interest can he estimated from the histogram of time intervals between point events, Monte Carlo simulations illustrate the validity of the derived estimation formulas and procedures.
引用
收藏
页码:658 / 664
页数:7
相关论文
共 50 条
  • [21] Improved Initialization of the EM Algorithm for Mixture Model Parameter Estimation
    Panic, Branislav
    Klemenc, Jernej
    Nagode, Marko
    MATHEMATICS, 2020, 8 (03)
  • [22] Statistical Inference for Periodic Self-Exciting Threshold Integer-Valued Autoregressive Processes
    Liu, Congmin
    Cheng, Jianhua
    Wang, Dehui
    ENTROPY, 2021, 23 (06)
  • [23] Parameter estimation of incomplete data in competing risks using the EM algorithm
    Park, C
    IEEE TRANSACTIONS ON RELIABILITY, 2005, 54 (02) : 282 - 290
  • [24] Parameter estimation of Markov switching bilinear model using the (EM) algorithm
    Maaziz, M.
    Kharfouchi, S.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 192 : 35 - 44
  • [26] A filtered EM algorithm for parameter estimation in linear filtering
    Florchinger, P
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 133 - 152
  • [27] Parameter estimation of mixed two distributions based on EM algorithm and Nelder-Mead algorithm
    Zhou, Yuting
    Yang, Xuemei
    Liu, Shiqi
    Yin, Junping
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 565 - 570
  • [28] Robust State Estimation for Fouling Evolution in Batch Processes using the EM Algorithm
    Wu, Ouyang
    Imsland, Lars
    Brekke, Edmund
    Schneider, Stefan M.
    Bouaswaig, Ala E. F.
    Roth, Matthias
    IFAC PAPERSONLINE, 2019, 52 (01): : 685 - 690
  • [29] EM Based Parameter Estimation for Markov Modulated Fluid Arrival Processes
    Almousa, Salah Al-Deen
    Horvath, Gabor
    Telek, Miklos
    PERFORMANCE ENGINEERING AND STOCHASTIC MODELING, 2021, 13104 : 226 - 242
  • [30] An EM algorithm for estimation in Markov-modulated Poisson processes
    Ryden, T
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 21 (04) : 431 - 447