Value Functions and Optimality Conditions for Nonconvex Variational Problems with an Infinite Horizon in Banach Spaces

被引:1
|
作者
Frankowska, Helene [1 ]
Sagara, Nobusumi [2 ]
机构
[1] Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75005 Paris, France
[2] Hosei Univ, Dept Econ, Tokyo 1940298, Japan
基金
日本学术振兴会;
关键词
infinite horizon; Dini-Hadamard subdifferential; Gelfand integral; differentiability of the value function; Euler-Lagrange condition; maximum principle; spatial Ramsey growth model; CONTINUOUS-TIME MODEL; VISCOSITY SOLUTIONS; TRANSVERSALITY CONDITIONS; MAXIMUM PRINCIPLE; EULER-LAGRANGE; OPTIMAL-GROWTH; DUALITY-THEORY; CALCULUS;
D O I
10.1287/moor.2021.1130
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the value function of an infinite horizon variational problem in the infinite-dimensional setting. First, we provide an upper estimate of its Dini-Hadamard subdifferential in terms of the Clarke subdifferential of the Lipschitz continuous integrand and the Clarke normal cone to the graph of the set-valued mapping describing dynamics. Second, we derive a necessary condition for optimality in the form of an adjoint inclusion that grasps a connection between the Euler-Lagrange condition and the maximum principle. The main results are applied to the derivation of the necessary optimality condition of the spatial Ramsey growth model.
引用
收藏
页码:320 / 340
页数:21
相关论文
共 50 条