Curvature of singular Bezier curves and surfaces

被引:4
|
作者
Sederberg, Thomas W. [1 ]
Lin, Hongwei [2 ]
Li, Xin [3 ]
机构
[1] Brigham Young Univ, Dept Comp Sci, Provo, UT 84602 USA
[2] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China
[3] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
关键词
Curvature; Singular points; Bezier curves; Bezier surface patches; PATCHES;
D O I
10.1016/j.cagd.2011.03.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a general approach for finding the limit curvature at a singular endpoint of a rational Bezier curve and the singular corner of a rational Bezier surface patch. Conditions for finite Gaussian and mean limit curvatures are expressed in terms of the rank of a matrix. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条
  • [1] Constructing Bezier curves with monotone curvature
    Wang, Aizeng
    Zhao, Gang
    Hou, Fei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 355 : 1 - 10
  • [2] Gaussian Curvature Connection of Bezier Surfaces
    Meng, Qingxian
    Liu, Jinqiu
    Meng, Huihui
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON CIVIL ENGINEERING AND TRANSPORTATION 2015, 2016, 30 : 1467 - 1470
  • [3] BEZIER-CURVES WITH CURVATURE AND TORSION CONTINUITY
    HAGEN, H
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1986, 16 (03) : 629 - 638
  • [4] C-Bezier curves and surfaces
    Zhang, JW
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1999, 61 (01): : 2 - 15
  • [5] Bezier curves and surfaces with shape parameters
    Yang, Lianqiang
    Zeng, Xiao-Ming
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (07) : 1253 - 1263
  • [6] Comparing Bezier Curves and Surfaces for Coincidence
    Vlachkova, Krassimira
    ADVANCED COMPUTING IN INDUSTRIAL MATHEMATICS, 2017, 681 : 239 - 250
  • [7] C-Bezier curves and surfaces
    State Key Lab. of CAD and CG, Zhejiang University, Hangzhou, China
    Graphical Models Image Process, 1 (2-15):
  • [8] Rational Bezier form of hodographs of rational Bezier curves and surfaces
    Kim, DS
    Jang, T
    Shin, H
    Park, JY
    COMPUTER-AIDED DESIGN, 2001, 33 (04) : 321 - 330
  • [9] Planar Typical Bezier Curves with a Single Curvature Extremum
    He, Chuan
    Zhao, Gang
    Wang, Aizeng
    Li, Shaolin
    Cai, Zhanchuan
    MATHEMATICS, 2021, 9 (17)
  • [10] Bezier Curves and Surfaces with the Generalized α-Bernstein Operator
    Canli, Davut
    Senyurt, Sueleyman
    SYMMETRY-BASEL, 2025, 17 (02):