Well-behaved dynamics in a dissipative nonideal periodically kicked rotator -: art. no. 066217

被引:7
作者
Chacón, R
García-Hoz, AM
机构
[1] Univ Extremadura, Escuela Ingn Inc, Dept Elect & Ingn Electromecan, E-06071 Badajoz, Spain
[2] Univ Castilla La Mancha, Escuela Univ Politecn, Dept Fis Aplicada, E-13400 Ciudad Real, Spain
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 06期
关键词
D O I
10.1103/PhysRevE.68.066217
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Well-behaved dynamical properties are found in a dissipative kicked rotator subjected to a periodic string of asymmetric pulses of finite amplitude and width. The stability boundaries of the equilibrium are determined to arbitrary approximation for trigonometric pulses by means of circular harmonic balance, and to first approximation for general elliptic pulses by means of an elliptic harmonic balance method. The bifurcation behavior at the stability boundaries is determined numerically. We show how the extension of the instability region of the equilibrium in pulse parameter space reaches a maximum as the pulse width is varied. We also characterize the dependence of the mean duration of the transients to the equilibrium on the pulse width. The evolution of the basins of attraction of chaotic attractors when solely the pulse width is varied is characterized numerically. Finally, we show that the order-chaos route when solely the width of the pulses is altered appears to be especially rich, including different types of crises. The mechanism underlying these reshaping-induced crises is discussed with the aid of a two-dimensional map.
引用
收藏
页数:11
相关论文
共 36 条
[1]  
ARNOLD VI, 1987, MATH METHODS CLASSIC, P113
[2]   GENERALIZED FOURIER-TRANSFORMS FOR NONLINEAR-SYSTEMS [J].
BEJARANO, JD ;
SANCHEZ, AM .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (08) :1871-1876
[3]  
BEJARANO JD, 1989, J SOUND VIB, V134, P333
[4]   STOCHASTIC NOISE AND CHAOTIC TRANSIENTS [J].
BLACKBURN, JA ;
GRONBECHJENSEN, N ;
SMITH, HJT .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :908-911
[5]   STABILITY AND HOPF BIFURCATIONS IN AN INVERTED PENDULUM [J].
BLACKBURN, JA ;
SMITH, HJT ;
GRONBECHJENSEN, N .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (10) :903-908
[6]  
BYRD PF, 1971, HDB ELLIPTIC INTEGRA, P303
[7]   PERIODIC OSCILLATIONS AND ATTRACTING BASINS FOR A PARAMETRICALLY EXCITED PENDULUM [J].
CAPECCHI, D ;
BISHOP, SR .
DYNAMICS AND STABILITY OF SYSTEMS, 1994, 9 (02) :123-143
[8]   Periodically kicked hard oscillators [J].
Cecchi, G. A. ;
Gonzalez, D. L. ;
Magnasco, M. O. ;
Mindlin, G. B. ;
Piro, O. ;
Santillan, A. J. .
CHAOS, 1993, 3 (01) :51-62
[9]   Chaos and geometrical resonance in the damped pendulum subjected to periodic pulses [J].
Chacon, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (03) :1477-1483
[10]   INHIBITION OF CHAOS IN HAMILTONIAN-SYSTEMS BY PERIODIC PULSES [J].
CHACON, R .
PHYSICAL REVIEW E, 1994, 50 (02) :750-753