Control of the motion of a triaxial ellipsoid in a fluid using rotors

被引:10
作者
Borisov, A. V. [1 ,2 ]
Vetchanin, E. V. [2 ,3 ]
Kilin, A. A. [2 ,4 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Oblast, Russia
[2] Udmurt State Univ, Izhevsk, Russia
[3] Kalashnikov Udmurt State Tech Univ, Izhevsk, Russia
[4] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg, Russia
基金
俄罗斯基础研究基金会;
关键词
ideal fluid; motion of a rigid body; Kirchhoff equations; control by rotors; gate; INTERNAL ROTORS; IDEAL FLUID; BODY; MASS;
D O I
10.1134/S0001434617090176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The motion of a body shaped as a triaxial ellipsoid and controlled by the rotation of three internal rotors is studied. It is proved that the motion is controllable with the exception of a few particular cases. Partial solutions whose combinations enable an unbounded motion in any arbitrary direction are constructed.
引用
收藏
页码:455 / 464
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 2005, DYNAMICS RIGID BODY
[2]   Optimal Kinematic Control of an Autonomous Underwater Vehicle [J].
Biggs, James ;
Holderbaum, William .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (07) :1623-1626
[3]   How to control the Chaplygin ball using rotors. II [J].
Borisov, Alexey V. ;
Kilin, Alexander A. ;
Mamaev, Ivan S. .
REGULAR & CHAOTIC DYNAMICS, 2013, 18 (1-2) :144-158
[4]   How to control Chaplygin's sphere using rotors [J].
Borisov, Alexey V. ;
Kilin, Alexander A. ;
Mamaev, Ivan S. .
REGULAR & CHAOTIC DYNAMICS, 2012, 17 (3-4) :258-272
[5]   Equilibria, stability and Hamiltonian Hopf bifurcation of a gyrostat in an incompressible ideal fluid [J].
Guirao, Juan L. G. ;
Vera, Juan A. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (19) :1648-1654
[6]   Dynamics of the Kirchhoff equations I: Coincident centers of gravity and buoyancy [J].
Holmes, P ;
Jenkins, J ;
Leonard, NE .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 118 (3-4) :311-342
[7]   Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev "How to control the Chaplygin ball using rotors. II" [J].
Ivanova, Tatiana B. ;
Pivovarova, Elena N. .
REGULAR & CHAOTIC DYNAMICS, 2014, 19 (01) :140-143
[8]  
Kilin Alexander A., 2015, Russian Journal of Nonlinear Dynamics, V11, P633
[9]  
Kirchhoff G., 1877, Vorlesungen uber mathematische Physik. Mechanik, V2te
[10]   The motion of a variable body in an ideal fluid [J].
Kozlov, VV ;
Ramodanov, SM .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (04) :579-587