ON GRADIENT STRUCTURES FOR MARKOV CHAINS AND THE PASSAGE TO WASSERSTEIN GRADIENT FLOWS

被引:20
|
作者
Disser, Karoline [1 ]
Liero, Matthias [1 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
基金
欧洲研究理事会;
关键词
Wasserstein gradient flow; discrete gradient flow structures; entropy/entropy-dissipation formulation; evolutionary Gamma-convergence; Markov chains; CONVERGENCE; DIFFUSION; EQUATIONS; EVOLUTION;
D O I
10.3934/nhm.2015.10.233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.
引用
收藏
页码:233 / 253
页数:21
相关论文
共 50 条
  • [21] Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows
    Crucinio, Francesca R.
    De Bortoli, Valentin
    Doucet, Arnaud
    Johansen, Adam M.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 173
  • [22] On performance potentials and conditional Monte Carlo for gradient estimation for Markov chains
    Cao, XR
    Fu, MC
    Hu, JQ
    ANNALS OF OPERATIONS RESEARCH, 1999, 87 (0) : 263 - 272
  • [23] Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction
    Arnrich, Steffen
    Mielke, Alexander
    Peletier, Mark A.
    Savare, Giuseppe
    Veneroni, Marco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (3-4) : 419 - 454
  • [24] Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows
    Portegies, Jacobus W.
    Peletier, Mark A.
    INTERFACES AND FREE BOUNDARIES, 2010, 12 (02) : 121 - 150
  • [25] DOUBLY NONLINEAR DIFFUSIVE PDEs: NEW EXISTENCE RESULTS VIA GENERALIZED WASSERSTEIN GRADIENT FLOWS
    Caillet, Thibault
    Santambrogio, Filippo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (06) : 7043 - 7073
  • [26] McDiarmid type inequalities for Wasserstein contractive Markov chains
    Wang, Neng-Yi
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2025, 30
  • [27] Subgeometric rates of convergence in Wasserstein distance for Markov chains
    Durmus, Alain
    Fort, Gersende
    Moulines, Eric
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1799 - 1822
  • [28] Stochastic gradient descent for barycenters in Wasserstein space
    Backhoff, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 15 - 43
  • [29] Quasistatic Nonlinear Viscoelasticity and Gradient Flows
    Ball, J. M.
    Sengul, Y.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2015, 27 (3-4) : 405 - 442
  • [30] Jump processes as generalized gradient flows
    Peletier, Mark A.
    Rossi, Riccarda
    Savare, Giuseppe
    Tse, Oliver
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)