ON GRADIENT STRUCTURES FOR MARKOV CHAINS AND THE PASSAGE TO WASSERSTEIN GRADIENT FLOWS

被引:20
|
作者
Disser, Karoline [1 ]
Liero, Matthias [1 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
基金
欧洲研究理事会;
关键词
Wasserstein gradient flow; discrete gradient flow structures; entropy/entropy-dissipation formulation; evolutionary Gamma-convergence; Markov chains; CONVERGENCE; DIFFUSION; EQUATIONS; EVOLUTION;
D O I
10.3934/nhm.2015.10.233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.
引用
收藏
页码:233 / 253
页数:21
相关论文
共 50 条
  • [1] Gradient flows of the entropy for finite Markov chains
    Maas, Jan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (08) : 2250 - 2292
  • [2] Approximate Inference with Wasserstein Gradient Flows
    Frogner, Charlie
    Poggio, Tomaso
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2581 - 2589
  • [3] Entropic Approximation of Wasserstein Gradient Flows
    Peyre, Gabriel
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2323 - 2351
  • [4] A variational finite volume scheme for Wasserstein gradient flows
    Cances, Clement
    Gallouet, Thomas O.
    Todeschi, Gabriele
    NUMERISCHE MATHEMATIK, 2020, 146 (03) : 437 - 480
  • [5] Primal Dual Methods for Wasserstein Gradient Flows
    Carrillo, Jose A.
    Craig, Katy
    Wang, Li
    Wei, Chaozhen
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) : 389 - 443
  • [6] {Euclidean, metric, and Wasserstein} gradient flows: an overview
    Santambrogio, Filippo
    BULLETIN OF MATHEMATICAL SCIENCES, 2017, 7 (01) : 87 - 154
  • [7] KRAMERS' FORMULA FOR CHEMICAL REACTIONS IN THE CONTEXT OF WASSERSTEIN GRADIENT FLOWS
    Herrmann, Michael
    Niethammer, Barbara
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (02) : 623 - 635
  • [8] A new flow dynamic approach for Wasserstein gradient flows
    Cheng, Qing
    Liu, Qianqian
    Chen, Wenbin
    Shen, Jie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 524
  • [9] Structure Preserving Schemes for a Class of Wasserstein Gradient Flows
    Shiheng Zhang
    Jie Shen
    Communications on Applied Mathematics and Computation, 2025, 7 (3) : 1174 - 1194
  • [10] Fisher information regularization schemes for Wasserstein gradient flows
    Li, Wuchen
    Lu, Jianfeng
    Wang, Li
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 416