Progressive Attentional Learning for Underwater Image Super-Resolution

被引:6
作者
Chen, Xuelei [1 ]
Wei, Shiqing [1 ]
Yi, Chao [1 ]
Quan, Lingwei [1 ]
Lu, Cunyue [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China
来源
INTELLIGENT ROBOTICS AND APPLICATIONS | 2020年 / 12595卷
关键词
Super-resolution; Underwater image; Progressive learning; Attention mechanism;
D O I
10.1007/978-3-030-66645-3_20
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual perception plays an important role when underwater robots carry out missions under the sea. However, the quality of images captured by visual sensors is often affected by underwater environment conditions. Image super-resolution is an effective way to enhance the resolution of underwater images. In this paper, we propose a novel method for underwater image super-resolution. The proposed method uses CNNs with channel-wise attention to learn a mapping from low-resolution images to high-resolution images. And a progressive training strategy is used to deal with large scaling factors (e.g. 4x and 8x) of super-resolution. We name our method as Progressive Attentional Learning (PAL). Experiments on a recently published underwater image super-resolution dataset, USR-248 [11], show the superiority of our method over other state-of-the-art methods.
引用
收藏
页码:233 / 243
页数:11
相关论文
共 50 条
  • [41] Image Super-Resolution based on Structural Dissimilarity Learning Dictionary
    Mei, Dongfeng
    Zhu, Xuan
    Wang, Xianxian
    Ai, Na
    2017 INTERNATIONAL CONFERENCE ON THE FRONTIERS AND ADVANCES IN DATA SCIENCE (FADS), 2017, : 16 - 21
  • [42] Learning local Gaussian process regression for image super-resolution
    Li, Jianmin
    Qu, Yanyun
    Li, Cuihua
    Xie, Yuan
    Wu, Yang
    Fan, Jianping
    NEUROCOMPUTING, 2015, 154 : 284 - 295
  • [43] Implicit Neural Representation Learning for Hyperspectral Image Super-Resolution
    Zhang, Kaiwei
    Zhu, Dandan
    Min, Xiongkuo
    Zhai, Guangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [44] Internal Learning for Image Super-Resolution by Adaptive Feature Transform
    He, Yifan
    Cao, Wei
    Du, Xiaofeng
    Chen, Changlin
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 19
  • [45] Edge Guided Learning for Image Super-resolution with Realistic Textures
    Li, Zhan
    Zhong, Ziyi
    Chen, Zhitao
    Yao, Gengqi
    Chen, Xi
    Huang, Weijian
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [46] Multiple Residual Learning Network for Single Image Super-Resolution
    Liu, Renhe
    Li, Sumei
    Hou, Chunping
    Lei, Guoqing
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [47] Lightweight image super-resolution with the adaptive weight learning network
    Zhang Y.
    Cheng P.
    Zhang S.
    Wang X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2021, 48 (05): : 15 - 22
  • [48] Research on Image Super-Resolution Reconstruction Based on Deep Learning
    An, Lingran
    Dai, Fengzhi
    Yuan, Yasheng
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 640 - 643
  • [49] Single Image Super-Resolution Based on Incoherent Dictionary Learning
    Wang, Junhua
    Liao, Xiaofang
    Li, Jianjun
    Li, Junshan
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 555 - 558
  • [50] DEEP NETWORK FOR IMAGE SUPER-RESOLUTION WITH A DICTIONARY LEARNING LAYER
    Liu, Yang
    Chen, Qingchao
    Wassell, Ian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 967 - 971