Asymptotic confidence intervals in ridge regression based on the Edgeworth expansion

被引:10
作者
Firinguetti, Luis [1 ]
Bobadilla, Gladys [2 ]
机构
[1] Univ Bio Bio, Fac Ciencias, Dept Matemat, Concepcion, Chile
[2] Univ Santiago, Fac Ciencia, Dept Matemat & CC, Santiago 3363, Chile
关键词
Asymptotic confidence intervals; Collinearity; Edgeworth expansion; Ridge regression; ESTIMATORS;
D O I
10.1007/s00362-009-0229-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ridge Regression techniques have been found useful to reduce mean square errors of parameter estimates when multicollinearity is present. But the usefulness of the method rest not only upon its ability to produce good parameter estimates, with smaller mean squared error than Ordinary Least Squares, but also on having reasonable inferential procedures. The aim of this paper is to develop asymptotic confidence intervals for the model parameters based on Ridge Regression estimates and the Edgeworth expansion. Some simulation experiments are carried out to compare these confidence intervals with those obtained from the application of Ordinary Least Squares. Also, an example will be provided based on the well known data set of Hald.
引用
收藏
页码:287 / 307
页数:21
相关论文
共 13 条
  • [1] [Anonymous], 1952, Statistical Theory with Engineering Applications
  • [2] CRIVELLI A, 1996, COMMUN STAT-SIMUL C, V24, P631
  • [3] ELSTON DA, 1995, APPL STAT, V44, P395
  • [4] FEIG D, 1988, J STATISTICAL SIMULA, V29, P127
  • [5] FRANK I, 1993, TECHNOMETRICS, V35, P365
  • [6] GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER TYPE
    HILL, GW
    DAVIS, AW
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (04): : 1264 - &
  • [7] HOERL A, 2000, TECHNOMETRICS, V42, P105
  • [8] Graphical methods for evaluating ridge regression estimator in mixture experiments
    Jang, DH
    Yoon, M
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (03) : 1049 - 1061
  • [9] Johnson S.R., 1973, Metroeconomica, V25, P306, DOI 10.1111/j.1467-999X.1973.tb00218.x
  • [10] Lawless J., 1976, COMMUN STAT-THEOR M, V5, P1615