Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model

被引:117
|
作者
Lynch, Michael [1 ]
Ghita, Ovidiu [2 ]
Whelan, Paul F. [2 ]
机构
[1] Siemens AG, D-91058 Erlangen, Germany
[2] Dublin City Univ, Vis Syst Grp, Dublin 9, Ireland
关键词
cardiac magnetic resonance imaging (MRI); four-dimensional (4-D); level-set; segmentation; temporal model;
D O I
10.1109/TMI.2007.904681
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modern medical imaging modalities provide large amounts of information in both the spatial and temporal domains and the incorporation of this information in a coherent algorithmic framework is a significant challenge. In this paper, we present a novel and intuitive approach to combine 3-D spatial and temporal (3-D + time) magnetic resonance imaging (MRI) data in an integrated segmentation algorithm to extract the myocardium of the left ventricle. A novel level-set segmentation process is developed that simultaneously delineates and tracks the boundaries of the left ventricle muscle. By encoding prior knowledge about cardiac temporal evolution in a parametric framework, an expectation- maximization algorithm optimally tracks the myocardial deformation over the cardiac cycle. The expectation step deforms the level-set function while the maximization step updates the prior temporal model parameters to perform the segmentation in a nonrigid sense.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 20 条
  • [1] Automated Segmentation and 4D Reconstruction of the Heart Left Ventricle from CINE MRI
    Molina, Giovanni
    Velazco-Garcia, Jose D.
    Shah, Dipan
    Becker, Aaron T.
    Seimenis, Ioannis
    Tsiamyrtzis, Panagiotis
    Tsekos, Nikolaos V.
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 1019 - 1023
  • [2] Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model
    Luo, Yang
    Yang, Benqiang
    Xu, Lisheng
    Hao, Liling
    Liu, Jun
    Yao, Yang
    van de Vosse, Frans
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (10) : 1741 - 1751
  • [3] Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model
    Wu, Yuwei
    Wang, Yuanquan
    Jia, Yunde
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (09) : 990 - 1003
  • [4] Segmentation of the left and right cardiac ventricle using a combined bi-temporal statistical model
    Fritz, Dominik
    Rinck, Daniel
    Dillmann, R. diger
    Scheuering, Michael
    MEDICAL IMAGING 2006: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND DISPLAY, 2006, 6141
  • [5] CPS-based fully automatic cardiac left ventricle and left atrium segmentation in 3D MRI
    Ahmad, Ibtihaj
    Hussain, Farhan
    Khan, Shoab Ahmad
    Akram, Usman
    Jeon, Gwanggil
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4153 - 4164
  • [6] Automatic Segmentation of the Left Ventricle From Cardiac MRI Using Deep Learning and Double Snake Model
    Lan, Yihua
    Jin, Renchao
    IEEE ACCESS, 2019, 7 : 128641 - 128650
  • [7] Improving 3D active appearance model segmentation of the left ventricle with Jacobian tuning
    Leung, K. Y. E.
    van Stralen, M.
    Voormolen, M. M.
    de Jong, N.
    van der Steen, A. F. W.
    Reiber, J. H. C.
    Bosch, J. G.
    MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [8] Medical image segmentation using 3D MRI data
    Voronin, V.
    Marchuk, V.
    Semenishchev, E.
    Cen, Yigang
    Agaian, S.
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2017, 2017, 10221
  • [9] Automatic segmentation of the left ventricle in 3D echocardiography using active appearance models
    van Stralen, M.
    Leung, K. Y. E.
    Voormolen, M. M.
    de Jong, N.
    van der Steen, A. F. W.
    Reiber, J. H. C.
    Bosch, J. G.
    2007 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1-6, 2007, : 1480 - +
  • [10] Segmentation of the left ventricle in 4d-dSPECT data using free form deformation of super quadrics
    Pohle, R
    Wegner, M
    Rink, K
    Toennies, K
    Celler, A
    Blinder, S
    MEDICAL IMAGING 2004: IMAGE PROCESSING, PTS 1-3, 2004, 5370 : 1388 - 1394