Fiber-reinforced mortar with 100% recycled fine aggregates: A cleaner perspective on 3D printing

被引:58
|
作者
Xiao, Jianzhuang [1 ,2 ]
Zou, Shuai [1 ]
Ding, Tao [1 ,2 ]
Duan, Zhenhua [1 ]
Liu, Qiong [1 ]
机构
[1] Tongji Univ, Dept Struct Engn, Coll Civil Engn, Shanghai 200092, Peoples R China
[2] Tongji Univ, Key Lab Performance Evolut & Control Engn Struct, Minist Educ, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
3D mortar printing (3DMP); Recycled fine aggregates (RFA); Fiber-reinforced; Mechanical properties; Anisotropic degree; Microscopic analysis; CONCRETE; PERFORMANCE; CONSTRUCTION;
D O I
10.1016/j.jclepro.2021.128720
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The huge labour-consumption, construction and demolition (C&D) waste pollution, and shortage of river sand have become increasingly serious problems facing the construction industry. Therefore, the possibility of fully replacing natural fine aggregates (NFA) with recycled fine aggregates (RFA) for fiber-reinforced 3D mortar printing (3DMP) was carefully evaluated by Digital Image Correlation (DIC) technique, mechanical testing, and microscopic analysis in this study. The results show that the 100% replacement of RFA had very limited impact on the failure pattern of the 3D printed (3DP) specimen, while the addition of 1% polyethylene (PE) fibers would change the failure pattern of specimens from brittle to ductile. This study also defines the parameter of anisotropic degree to reflect the anisotropy. It is found that the anisotropic degree of 3DP specimens was different under various loading conditions and obviously affected by both RFA and fibers. The microscopic analysis indicated that the effect of RFA on the 3DP specimens was mainly due to the porous structure and the existence of initial micro-cracks, while the effect of fibers was mainly due to the interfacial bond between PE fibers and matrix. This study also found that after reinforcing with appropriate fibers, the 3DP mortar mixed with 100% RFA has higher mechanical properties and better deformation ability than the fiber-free mortar with 100% NFA. It is believed that the 100% replacement of RFA is applicable in 3DMP, which will bring significant benefits to the cleaner production and sustainable development of the construction industry.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Buildability assessment of mortar with fine recycled aggregates for 3D printing
    De Vlieger, Jentel
    Boehme, Luc
    Blaakmeer, Jan
    Li, Jiabin
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 367
  • [2] Rheology of fiber-reinforced mortar for 3D printing construction: Effect of recycled hybrid powder and polyethylene fiber
    Hou, Shaodan
    Wu, Wenbo
    Duan, Zhenhua
    Zou, Shuai
    Liang, Chaofeng
    Ye, Jun
    Xiao, Jianzhuang
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 447
  • [3] On rheology of mortar with recycled fine aggregate for 3D printing
    Zou, Shuai
    Xiao, Jianzhuang
    Duan, Zhenhua
    Ding, Tao
    Hou, Shaodan
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 311
  • [4] Sustainable 3D printed mortar with CO2 pretreated recycled fine aggregates
    Sun, Bochao
    Zeng, Qiang
    Wang, Dianchao
    Zhao, Weijian
    CEMENT & CONCRETE COMPOSITES, 2022, 134
  • [5] Evaluating the use of recycled fine aggregates in 3D printing: a systematic review
    Reddy, P. Venugopal
    Nakkeeran, G.
    Roy, Dipankar
    Alaneme, George Uwadiegwu
    DISCOVER APPLIED SCIENCES, 2024, 6 (12)
  • [6] Recycled ceramic brick powder utilization in fiber reinforced 3D printing concrete: An eco-friendly substitute to conventional fine aggregates
    Huang, Bo
    Ge, Yutian
    Wang, Xiangyu
    Wang, Yufei
    Wang, Jianqun
    Song, Chengwei
    Zhu, Jun
    Amaechi, Chiemela Victor
    Sun, Junbo
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [7] Feasibility of glass/basalt fiber reinforced seawater coral sand mortar for 3D printing
    Li, L. G.
    Xiao, B. F.
    Fang, Z. Q.
    Xiong, Z.
    Chu, S. H.
    Kwan, A. K. H.
    ADDITIVE MANUFACTURING, 2021, 37
  • [8] Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Interlayer Bonding and Anisotropy
    Lv, Chun
    Shen, Hongtao
    Liu, Jie
    Wu, Dan
    Qu, Enxiang
    Liu, Shuang
    MATERIALS, 2022, 15 (22)
  • [9] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    ADDITIVE MANUFACTURING, 2021, 40
  • [10] Metallization of Recycled Glass Fiber-Reinforced Polymers Processed by UV-Assisted 3D Printing
    Romani, Alessia
    Tralli, Paolo
    Levi, Marinella
    Turri, Stefano
    Suriano, Raffaella
    MATERIALS, 2022, 15 (18)