Numerical investigation on the effect of boundary conditions on the scaling of spontaneous imbibition

被引:16
作者
Abd, Abdul Salam [1 ]
Alyafei, Nayef [1 ]
机构
[1] Texas A&M Univ Qatar, Dept Petr Engn, POB 23874, Doha, Qatar
来源
OIL AND GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES | 2018年 / 73卷
关键词
EXACT INTEGRAL SOLUTIONS; OIL-RECOVERY; SHAPE FACTOR; FLOW; WETTABILITY;
D O I
10.2516/ogst/2018060
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We present a numerical validation of the scaling group presented by Schmid and Geiger ((2012) Water Resour. Res. 48, 3) for Spontaneous Imbibition (SI) through simulating a core sample bounded by the wetting fluid. We combine the results of the simulations with the semi-analytical model for counter-current spontaneous imbibition presented by Schmid et al. ((2011) Water Resour. Res. 47, 2) to validate the upscaling of laboratory experiments to field dimensions using dimensionless time. We then present a detailed parametric study on the effect of Boundary Conditions (BC) and characteristic length to compare imbibition assisted oil recovery with several types of boundary conditions. We demonstrate that oil recovery was the fastest and most efficient when all faces are open to flow. We also demonstrate that all cases scale with the non-dimensionless time suggested by Schmid and Geiger ((2012) Water Resour. Res. 48, 3) and show a close match to the numerical simulation and the semi-analytical solution. Moreover, we discuss how the effect of constructing a model with varying grid sizes and dimensions affects the accuracy of the results through comparing the results of the 2-D and 3-D models. We observe that the 3-D model proved superior in the accuracy of the results to simulate simple counter-current SI. However, we deduce that 2-D models yield satisfying enough results in a timely manner in the One End Open (OEO) and Two Ends Open (TEO) cases, compared to 3-D models which are time-consuming. We finally conclude that the non-dimensionless time of Schmid and Geiger ((2012) Water Resour. Res. 48, 3) works well with counter-current SI cases regardless of the boundary condition imposed on the core.
引用
收藏
页数:15
相关论文
共 38 条
[1]   Experimental and Analytical Investigation of Spontaneous Imbibition in Water-Wet Carbonates [J].
Alyafei, Nayef ;
Al-Menhali, Ali ;
Blunt, Martin J. .
TRANSPORT IN POROUS MEDIA, 2016, 115 (01) :189-207
[2]   WETTABILITY LITERATURE SURVEY .2. WETTABILITY MEASUREMENT [J].
ANDERSON, WG .
JOURNAL OF PETROLEUM TECHNOLOGY, 1986, 38 (12) :1246-1262
[3]  
[Anonymous], 1996, P SPE ANN TECH C EXH, DOI DOI 10.2118/36688-MS
[4]  
[Anonymous], 1972, FALL M SOC PETR ENG
[5]  
[Anonymous], 1986, P EUR PETR C
[6]  
Bourbiaux B.J., 1990, SPE RESERVOIR ENG, V5, P361, DOI [10.2118/18283-PA, DOI 10.2118/18283-PA]
[7]  
Cil M., 1998, SPE ANN TECH C EXH, DOI [10.2118/49005-MS, DOI 10.2118/49005-MS]
[8]   OIL-RECOVERY BY IMBIBITION IN LOW-PERMEABILITY CHALK [J].
CUIEC, L ;
BOURBIAUX, B ;
KALAYDJIAN, F .
SPE FORMATION EVALUATION, 1994, 9 (03) :200-208
[9]   Modeling the effect of viscosity ratio on spontaneous imbibition [J].
Fischer, Herbert ;
Wo, Shaochang ;
Morrow, Norman R. .
SPE RESERVOIR EVALUATION & ENGINEERING, 2008, 11 (03) :577-589
[10]   Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids [J].
Ge, Hong-Kui ;
Yang, Liu ;
Shen, Ying-Hao ;
Ren, Kai ;
Meng, Fan-Bao ;
Ji, Wen-Ming ;
Wu, Shan .
PETROLEUM SCIENCE, 2015, 12 (04) :636-650